首页 | 本学科首页   官方微博 | 高级检索  
     

侧扫声呐图像分割的中性集合与量子粒子群算法
引用本文:赵建虎,王晓,张红梅,胡俊,简晓敏. 侧扫声呐图像分割的中性集合与量子粒子群算法[J]. 测绘学报, 2016, 45(8): 935-942. DOI: 10.11947/j.AGCS.2016.20150555
作者姓名:赵建虎  王晓  张红梅  胡俊  简晓敏
作者单位:1. 武汉大学测绘学院, 湖北 武汉430079;2. 武汉大学动力与机械学院, 湖北 武汉430072
基金项目:41176068)@@@@国家自然科学基金(41576107
摘    要:
针对现有的侧扫声呐图像分割方法存在分割准确率不高和效率偏低的问题,提出了一种基于中性集合和量子粒子群算法的侧扫声呐图像阈值分割方法。通过基于中性集合计算图像灰度共生矩阵,实现了侧扫声呐图像精细纹理的表达,提高了分割精度;基于二维最大熵理论,采用量子粒子群算法计算二维最优分割阈值向量,实现了分割阈值向量的快速准确获取,提高了分割效率和精度。最终实现了高噪声侧扫声呐图像目标的准确、高效分割。通过对含有不同目标的侧扫声呐图像的分割试验,验证了该算法的有效性。

关 键 词:侧扫声呐图像  中性集合  量子粒子群算法  图像分割  
收稿时间:2015-11-03
修稿时间:2016-06-03

The Neutrosophic Set and Quantum-behaved Particle Swarm Optimization Algorithm of Side Scan Sonar Image Segmentation
ZHAO Jianhu,WANG Xiao,ZHANG Hongmei,HU Jun,JIAN Xiaomin. The Neutrosophic Set and Quantum-behaved Particle Swarm Optimization Algorithm of Side Scan Sonar Image Segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 935-942. DOI: 10.11947/j.AGCS.2016.20150555
Authors:ZHAO Jianhu  WANG Xiao  ZHANG Hongmei  HU Jun  JIAN Xiaomin
Affiliation:1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
Abstract:
Due to the problem of the existing image segmentation methods applied in side scan sonar (SSS)image often suffered from low efficiency or low accuracy,this paper proposed a novel SSS image thresholding segmentation method based on neutrosophic set (NS)and quantum-behaved particle swarm optimization (QPSO)algorithm.Firstly,the image gray co-occurrence matrix is constructed in NS domain, the fine texture of SSS image is expressed,and this can improve the accuracy of SSS image segmentation. Then,based on the two-dimensional maximum entropy theory,the optimal two-dimensional segmentation threshold vector is quickly and accurately obtained by QPSO algorithm,and this can improve the efficiency and accuracy of SSS image segmentation.Finally,the accurate and high efficient target segmentation of SSS image with high noises is realized.The effectiveness of the algorithm is verified by segmenting SSS image containing different targets.
Keywords:side scan sonar (SSS)image  neutrosophic set (NS)  quantum-behaved particle swarm optimization (QPSO)algorithm  image segmentation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号