首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sediment Suspension and Deposition Across Restored Oyster Reefs of Varying Orientation to Flow: Implications for Restoration
Authors:Allison M Colden  Kelsey A Fall  Grace M Cartwright  Carl T Friedrichs
Institution:1.Virginia Institute of Marine Science, College of William and Mary,Gloucester Point,USA
Abstract:The eastern oyster, Crassostrea virginica, is a prominent ecosystem engineer, whose reefs exhibit strikingly consistent morphologies at multiple spatial scales throughout its North American range. These distinct morphologies are thought to form by interactions of nascent reef structures with hydrodynamics. We carried out two field studies to determine if historical reef configurations applied in a restoration context would improve reef persistence and restoration outcomes. We collected seabed and water column observations across constructed reefs of three orientations representative of those found historically throughout the oyster’s range: parallel or perpendicular to tidal currents or circular. Areas adjacent to reefs were sites of fine sediment trapping, with lower flow velocities, evidence of particle settling, and more fine sediments on the seabed relative to off-reef reference sites. The water column above the reef crest exhibited higher acoustic backscatter, higher flow velocities, and larger particles in suspension, consistent with local erosion of flocculated fine sediment from the reef crest. Perpendicular reefs produced conditions that were more conducive to reef persistence and improved oyster performance, including high flow velocities and enhanced resuspension of sediments from the reef, compared to parallel or circular reefs. Particle trapping in areas between reefs has the potential to inhibit reef growth between existing reef structures, providing support for hypotheses of landscape-scale reef pattern formation. Oyster reef restoration efforts can benefit from this improved understanding of biophysical interactions arising from reef orientation that contribute to sediment dynamics on constructed oyster reefs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号