Abstract: | Man's engineering activities are concentrated on the uppermost part of the earth's crust which is called engineering-geologic zone. This zone is characterized by a significant spatialtemporal variation of the physical properties status of rocks, and saturating waters. This variation determines the specificity of geophysical and, particularly, geoelectrical investigations. Planning of geoelectric investigations in the engineering-geologic zone and their subsequent interpretation requires a priori) geologic-geophysical information on the main peculiarities of the engineering-geologic and hydrogeologic conditions in the region under investigation. This information serves as a basis for the creation of an initial geoelectric model of the section. Following field investigations the model is used in interpretation. Formalization of this a priori) model can be achieved by the solution of direct geoelectric problems. An additional geologic-geophysical information realized in the model of the medium allows to diminish the effect of the “principle of equivalence” by introducing flexible limitations in the section's parameters. Further geophysical observations as well as the correlations between geophysical and engineering-geologic parameters of the section permit the following step in the specification of the geolectric model and its approximation to the real medium. Next correction of this model is made upon accumulation of additional information. The solution of inverse problems with the utilization of computer programs permits specification of the model in the general iterational cycle of interpretation. |