摘 要: | 面向对象的CART决策树分类方法可解决目前流行的监督分类、非监督分类以及模糊分类方法中“同物异谱、异物同谱”引发的漏分、错分问题。该方法融入了形状和纹理特征进行分类,同时运用二级分类体系解决了相似地物因光谱、纹理不同而导致的地物错分问题,分类效果较好。利用楚雄市鹿城镇2013年GF-1号遥感影像进行土地利用分类。结果表明:(1)基于光谱、形状和纹理信息选取的19个特征变量开展面向对象的CART决策树分类,总体精度可达90.22%,其中林地分类的效果最好;(2)二级分类体系解决了耕地、裸地因光谱、纹理特征多样而产生的地物错分问题,总体精度提高了7.06%,Kappa系数提高了8.17%。
|