首页 | 本学科首页   官方微博 | 高级检索  
     检索      

贝加尔湖的污染与富营养化
作者姓名:Evgeniya N. Tarasov  Alexander A. Mamontov  Elena A. Mamontova
作者单位:Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences;1 A Favorsky st. Irkytsk 664033, Russia,Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences;1 A Favorsky st. Irkytsk 664033, Russia,Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences;1 A Favorsky st. Irkytsk 664033, Russia
摘    要:The long term systematic investigations of ion composition components (bicarbonates, chlorides, sulphates, magnesium, calcium, sodium, potassium) and trophic status components (suspension, chlorophyll-a, mineral and organic forms phosphorus and nitrogen, carbon, silica) of water from the lake proper, its tributaries and atmospheric precipitation, which make up the main share of substance supply in to the lake, as well as the Angara river, being the source of substance discharge allowed the lake recent state to be evaluated in terms of both chemical pollution and possible eutrophication of its water. The similar (in terms of river runojf) periods of 50-ies and 80-ies have been compared. It was revealed that as a result of industrial activity 409 thousand tons of mineral substances (27.2 thousand tons of chlorides, 162 thousand tons of sulphates and over 200 thousand tons of organic substances) are supplied in the lake annually. The supply of substances of the anthropogenic origin is higher for the South Baikal than that for the North and Middle Baikal (the sum of mineral substances in 3.6 times; sulphates in 5 times, organic substances, including hydrocarbons in 7 times).The absence of abundant phytoplankton in the period studied when the ratio of silica to phosphorus is optimum (over 100), as well as a revers correlation between winter nitrogen content and spring of chlorophyll-a concentration in the Baikal water and revers dependence between the suspension and chlorophyll-a along the Selenga river valley lead to the conclusion that Baikal water contains toxicants. It is verified by the presence of polychlorbiphenyls (PCB), poly-chlordibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) for the whole food web with the maximum PCDD/PCDF (TEQ to 175 P g · g-1) concentration in the seal blubber. The levels are comparable with those reported for ringed seal (phoca hispida), living in the Baltic sea and Bar-row Strait Inlet in the Canadian Arctic.

关 键 词:Lake  Baikal  pollution  eutrophication  polychlorinated  compounds  Lake
收稿时间:1997/2/25 0:00:00
修稿时间:1998/3/27 0:00:00

Pollution and Eutrophication in Lake Baikal
Evgeniya N. Tarasov,Alexander A. Mamontov,Elena A. Mamontova.Pollution and Eutrophication in Lake Baikal[J].Journal of Lake Science,1998,10(S1):167-179.
Authors:Evgeniya N Tarasov  Alexander A Mamontov and Elena A Mamontova
Institution:Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences;1 A Favorsky st. Irkytsk 664033, Russia,Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences;1 A Favorsky st. Irkytsk 664033, Russia and Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences;1 A Favorsky st. Irkytsk 664033, Russia
Abstract:The long term systematic investigations of ion composition components (bicarbonates, chlorides, sulphates, magnesium, calcium, sodium, potassium) and trophic status components (suspension, chlorophyll-a, mineral and organic forms phosphorus and nitrogen, carbon, silica) of water from the lake proper, its tributaries and atmospheric precipitation, which make up the main share of substance supply in to the lake, as well as the Angara river, being the source of substance discharge allowed the lake recent state to be evaluated in terms of both chemical pollution and possible eutrophication of its water. The similar (in terms of river runojf) periods of 50-ies and 80-ies have been compared. It was revealed that as a result of industrial activity 409 thousand tons of mineral substances (27.2 thousand tons of chlorides, 162 thousand tons of sulphates and over 200 thousand tons of organic substances) are supplied in the lake annually. The supply of substances of the anthropogenic origin is higher for the South Baikal than that for the North and Middle Baikal (the sum of mineral substances in 3.6 times; sulphates in 5 times, organic substances, including hydrocarbons in 7 times).The absence of abundant phytoplankton in the period studied when the ratio of silica to phosphorus is optimum (over 100), as well as a revers correlation between winter nitrogen content and spring of chlorophyll-a concentration in the Baikal water and revers dependence between the suspension and chlorophyll-a along the Selenga river valley lead to the conclusion that Baikal water contains toxicants. It is verified by the presence of polychlorbiphenyls (PCB), poly-chlordibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) for the whole food web with the maximum PCDD/PCDF (TEQ to 175 P g · g-1) concentration in the seal blubber. The levels are comparable with those reported for ringed seal (phoca hispida), living in the Baltic sea and Bar-row Strait Inlet in the Canadian Arctic.
Keywords:Lake Baikal  pollution  eutrophication  polychlorinated compounds Lake
点击此处可从《湖泊科学》浏览原始摘要信息
点击此处可从《湖泊科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号