首页 | 本学科首页   官方微博 | 高级检索  
     检索      


THEORETICAL APPROACH TO THE SOLUTION OF THE INFILTRATION PROBLEM
Authors:A C LIAKOPOULOS Dr Eng
Institution:Professor of Civil Engineering at the UNESCO College of Engineering, Riyadh Presently Fulbright Scholar Visiting the Mass. Inst. of Technology , Cambridge, Massachusetts
Abstract:ABSTRACT

The one-dimensional transient downward entry of water in unsaturated soils is investigated theoretically. The mathematical equation describing the infiltration process is derived by combining Darcy's dynamic equation of motion with the continuity and thermodynamic state equations adjusted for the unsaturated flow conditions. The resulting equation together with the corresponding initial and boundary conditions constitues a mathematical initial boundary value problem requiring the solution of a nonlinear partial differential equation of the parabolic type. The volumetric water content is taken as the dependent variable and the time and the position along the vertical direction are taken as the independent variables. The governing equation is of such nature that a solution exists for t > 0 and is uniquely determined if two relationships are defined, together with the specified state of the system, at the initial time t = 0 and at the two boundaries. The two required relations are those of pressure versus permeability and pressure versus volumetric water content.

Since the partial differential equation has strong non-linear terms, a discrete solution is obtained by approximating the derivatives with finite-differences at discrete mesh points in the solution domain and integrated for the corresponding initial and boundary conditions. The use of an implicit difference scheme is employed in order to generate a system of simultaneous non-linear equations that has to be solved for each time increment. For n mesh points the two boundary conditions provide two equations and the repetition of the recurrence formula provides n—2 equations, the total being n equations for each time increment. The solution of the system is obtained by matrix inversion and particularly with a back-substitution technique. The FORTRAN statements used for obtaining the solution with an electronic digital computer (IBM 704) are presented together with the input data.

Analysis of the errors involved in the numerical solution is made and the stability and convergence of the solution of the approximate difference equation to that of the differential equation is investigated. The method applied is that of making a Fourier series expansion of a whole line of errors and then following the progress of the general term of the series expansion and also the behavior of each constituent harmonic. The errors (forming a continuous function of points in an abstract Banach space) are represented by vectors with the Fourier coefficients constituting a second Banach space. The amplification factor of the difference equation is shown to be always less than unity which guarantees the stability of the employed implicit recurrence scheme.

Experiments conducted on a vertical column packed uniformly with very fine sand, show a satisfactory agreement between the theoretically and experimentally obtained values. Many experimental results are shown in an attempt to explain the infiltration phenomenon with emphasis on the shape and movement of the wet front, and the effects of the degree of compaction, initial water content and deaired water on the infiltration rate.
Keywords:runoff  trends  floods  peaks  climate variability  temperature  Sweden  écoulement  tendances  crues  pics  variabilité climatique  température  Suède
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号