摘 要: | 以2020年第6号台风“米克拉”为例,采集了5916条新浪微博作为数据源,综合应用隐含狄利克雷分布(Latent Dirichlet Allocation,LDA)主题模型、文本情感分析方法和空间分析技术,挖掘、分析台风的灾情时空过程。基于LDA主题模型建立了主题-词矩阵并进行隐含主题聚类,这些微博文本被分为灾损类信息、预警类信息、防御类信息和无关信息;从主题信息和文本情感值两个角度入手,对此次台风事件网络舆情的演化过程进行分析。结果表明:“米克拉”登陆前有大量积极情感的微博,主要包含渴望降雨、降温等信息,此类微博大量分布在漳州、厦门、福州等地区;在台风入境后消极情感的微博大量增多,主要描述道路、树木等受大风和大雨影响的灾损类信息,此类信息的空间位置主要分布在漳州和厦门,能较好地反映台风灾害影响的时空分布。通过对微博主题类别和情感极性进行时空分析,实现台风灾害事件发展趋势的监测,为防灾减灾提供参考依据。
|