首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Benthic mineralization rates at two locations in the southern North Sea
Authors:Ronald Osinga  Arjen J Kop  Gerard C A Duineveld  Rudolf A Prins  Fleur C Van Duyl
Abstract:Benthic oxygen uptake, sulphate reduction and benthic bacterial production were measured at two contrasting locations in the southern North Sea: the shallow and turbulent Broad Fourteens area in the Southern Bight, and the deeper Oyster Grounds, a deposition area, where thermohaline stratification occurs during summer. Oxygen uptake and sulphate reduction showed a clear seasonal pattern in the Broad Fourteens area, indicating a supply of carbon to the benthic system that is closely related to the standing stock of carbon in the water column. This close benthic-pelagic coupling is probably due to the influence of the tide in this part of the North Sea, which keeps the water column permanently mixed. At the Oyster Grounds, no seasonal pattern was observed. Peaks in oxygen uptake and sulphate reduction were found in winter. Irregularly occurring events, such as storms and fishery-related activities, are likely to affect the benthic mineralization patterns in this area. Annual benthic carbon mineralization rates estimated from oxygen uptake rates were 44 gC·m−2 at the Broad Fourteens, and 131 gC·m−2 at the Oyster Grounds, of which 26 and 28%, respectively, could be attributed to sulphate reduction (assuming an annual sulphide reoxidation rate of 100%). Although sulphate reduction rates in the southern North Sea are higher than previously suggested, aerobic respiration is the most important pathway for benthic carbon mineralization at the stations visited. Production rates of benthic bacterial carbon measured with labelled leucine were much higher than carbon mineralization rates based on oxygen uptake or sulphate reduction. This may either imply a very high bacterial carbon conversion efficiency, or point to shortcomings in the accuracy of the techniques. A critical evaluation of the techniques is recommended.
Keywords:benthic oxygen uptake  sulphate reduction  bacterial production
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号