首页 | 本学科首页   官方微博 | 高级检索  
     

多尺度特征融合深度学习建筑物的提取方法
引用本文:刘恒恒,张春森,葛英伟,史书. 多尺度特征融合深度学习建筑物的提取方法[J]. 地理空间信息, 2022, 20(2): 97-100. DOI: 10.3969/j.issn.1672-4623.2022.02.020
作者姓名:刘恒恒  张春森  葛英伟  史书
作者单位:西安科技大学测绘科学与技术学院,陕西 西安 710054
基金项目:陕西省自然科学基金资助项目;国家自然科学基金
摘    要:
提出一种基于多尺度特征融合的建筑物提取方法,结合新的网络DenseASPP-UNet,以实现影像多尺度特征的融合,进而高精度提取建筑物.通过Inria开源建筑物航空影像数据集进行验证,表明DenseASPP-UNet相比其他深度学习方法建筑物提取精度有很大的提升.

关 键 词:深度学习  建筑物提取  多尺度特征融合  密集空洞空间金字塔池化

Multi-scale Feature Fusion Deep Learning-based Building Extraction Method
LIU Hengheng,ZHANG Chunsen,GE Yingwei,SHI Shu. Multi-scale Feature Fusion Deep Learning-based Building Extraction Method[J]. Geospatial Information, 2022, 20(2): 97-100. DOI: 10.3969/j.issn.1672-4623.2022.02.020
Authors:LIU Hengheng  ZHANG Chunsen  GE Yingwei  SHI Shu
Affiliation:(College of Geomatics,Xi'an University of Science and Technology,Xi'an 710054,China)
Abstract:
We proposed a building extraction method based on multi-scale feature fusion.Based on the UNet model,we jumped layers in parallel with the dense cavity space pyramid pooling layer and used 1×1 convolution to reduce feature mapdimension.We proposed a new network Den-seASPPUNet to achieve multi-scale imagefeature fusion and extracted buildings with high precision.We verified it with the Inriaopen source building aerial image data set.The experiment result shows that DenseASPP-UNetgreatly improves building extraction accuracy compared with other deep learning methods.
Keywords:deep learning  building extraction  multi-scale feature fusion  dense cavity space pyramid pooling
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号