首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variation of groundwater hydrochemical characteristics in the plain area of the Tarim Basin,Xinjiang Region,China
Authors:Qiao Li  Jinlong Zhou  Yinzhu Zhou  Chunyan Bai  Hongfei Tao  Ruiliang Jia  Yuanyuan Ji  Guangyan Yang
Institution:1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, ürümqi, 830052, China
3. School of Environmental Science, China University of Geosciences, Wuhan, 430074, China
2. School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
Abstract:Groundwater hydrochemistry could reveal the interaction mechanism between groundwater and the environment, which provides a scientific basis for environmental resources management. In this study, Shukaliefu’s classification method and Piper diagram were adopted to determine the hydrochemical types of groundwater in the Tarim Basin of Xinjiang, China. The method of “one-vote veto” was applied to evaluate the quality of groundwater. Phreeqc software was used to calculate the saturation indices of calcite and fluorite in groundwater. By comparing groundwater quality data of 2003 and 2011, we characterized the variations in hydrochemical types and water quality types, salinization of groundwater and fluoride geochemistry of the plain area of the Tarim Basin. Results show that the primary anion in phreatic water in the plain area of the Tarim Basin changed from HCO3 ? to SO4 2? or Cl?. On the contrary, the primary anion in confined water changed from SO4 2? or Cl? to HCO3 ?. In 2003, 63.1 % of the sampling points in the study area exceeded the Class III water quality standard of China. In 2011, the proportion increased to 82.5 %. In addition, severe groundwater salinization was found at 19.7 % of the sampling points. Some of the deep groundwater samples were salinized as well. In the Aksu area at the north-west part of the Tarim Basin, F? concentration exceeding the standard limit (1 mg/L) was found to be 55.0 % of the groundwater samples tested. Based on these findings, it is concluded that the phreatic water in the study area was severely influenced by the industrial wastewater and domestic sewage related to human activities, while the confined water was less affected. The general quality of groundwater was in an aggravation trend, and the groundwater salinization was in a severe condition in this area. The Ca2+–Na+ ionic exchange, the unsaturated fluorite and oversaturated calcite in the aquifer of the Aksu area are proposed to cause F? enrichment in groundwater of this area.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号