首页 | 本学科首页   官方微博 | 高级检索  
     检索      

红海榄幼苗根系呼吸代谢对水淹胁迫的响应
引用本文:程皓,王友绍,马晓宇.红海榄幼苗根系呼吸代谢对水淹胁迫的响应[J].热带海洋学报,2022,41(6):12-19.
作者姓名:程皓  王友绍  马晓宇
作者单位:1.热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 5103012.中国科学院大亚湾海洋生物综合试验站, 广东 深圳 5181213.南方海洋科学与工程广东省实验室(广州), 广东 广州 511458
基金项目:国家重点研发计划项目(国家科技基础资源调查专项)(2017FY100700);国家自然科学基金重点项目(41676086);国家自然科学基金重点项目(U1901211);国家自然科学基金重点项目(41876126);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0305);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0303);国际伙伴计划(133244KYSB20180012);中国科学院A类战略性先导科技专项(XDA23050200);中国科学院A类战略性先导科技专项(XDA19060201)
摘    要:本研究利用人工潮汐系统(每天淹水0、6、12和18h), 研究了红海榄幼苗根系呼吸代谢对水淹胁迫的响应。结果表明, 每天淹水6h对红海榄幼苗的生长影响不大, 但随着水淹时间的延长, 红海榄幼苗的生长显著受到抑制。水淹时间的延长同样明显抑制了红海榄幼苗根系的产能效率, 且根系三羧酸循环的有氧呼吸速率、三磷酸腺苷含量以及琥珀酸脱氢酶和苹果酸脱氢酶活性最小值均出现在每天水淹18h处理组中。相反, 水淹胁迫下红海榄幼苗根系乙醇脱氢酶、乳酸脱氢酶活性以及乙醇和乳酸含量都呈上升的趋势。综上, 尽管无氧呼吸可一定程度上缓解三羧酸循环受阻所导致的产能匮乏, 但是过度的水淹胁迫仍会扰乱红海榄幼苗正常的生长和代谢, 导致三磷酸腺苷产能效率的降低以及无氧发酵代谢产物的积累。

关 键 词:水淹胁迫  红海榄  无氧呼吸  三羧酸循环  
收稿时间:2021-12-31
修稿时间:2022-04-11

Response of respiratory metabolism in the roots of Rhizophora stylosa to waterlogging
CHENG Hao,WANG Youshao,MA Xiaoyu.Response of respiratory metabolism in the roots of Rhizophora stylosa to waterlogging[J].Journal of Tropical Oceanography,2022,41(6):12-19.
Authors:CHENG Hao  WANG Youshao  MA Xiaoyu
Institution:1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China2. Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
Abstract:In this study, artificial-tidal systems (0, 6, 12, 18 h·d-1) were employed to explore the effect of waterlogging on respiratory metabolism in the roots of Rhizophora stylosa. The results showed that 6 h·d-1 waterlogging treatment appeared to has little negative effect on plant growth. However, the biomass yield efficiency decreased significantly with the elongation of waterlogging duration. Tricarboxylic acid respiratory rate, adenosine-triphosphate content, and the activities of succinate dehydrogenase and malate dehydrogenase were also obviously inhibited by long-duration waterlogging, especially in the treatment of 18 h·d-1. On the contrary, alcohol dehydrogenase, lactate dehydrogenase, and the contents of alcohol and lactate increased with the elongation of waterlogging duration. In summary, although anaerobic respiration can partly alleviate energy deficiency caused by the inhibition of tricarboxylic acid cycle, excessive waterlogging would disrupt normal growth and metabolism of R. stylosa, leading to declined adenosine-triphosphate productivity and increased anaerobic fermentative metabolites.
Keywords:waterlogging  Rhizophora stylosa  anaerobic respiration  tricarboxylic acid cycle  
点击此处可从《热带海洋学报》浏览原始摘要信息
点击此处可从《热带海洋学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号