摘 要: | 耕地地块作为精准农业的重要支撑,现有地块边界大多依靠人工勾绘。随着遥感技术的发展,基于遥感影像自动提取耕地地块成为研究主要方向,其中基于深度学习的方法能够克服传统检测方法难以适应复杂场景的局限而被广泛使用,但现有检测方法仍存在问题,基于深度卷积模型直接识别耕地区域会丢失内部边界、而基于边缘检测模型识别耕地边界时则会同时得到大量无关边界;此外,现有的基于阈值提取地块的策略所提取的地块不够规整,存在内陷的问题。针对上述问题,本研究提出一种基于深度卷积网络和分水岭分割的耕地地块提取方法,从信息检测和地块提取两方面进行改进:(1)将耕地边界视作一种地物类别,在深度卷积网络中进行类别概率检测,帮助实现对耕地边界的语义识别。(2)基于改进后的D-LinknetXt网络进行检测,其网络架构适合于对耕地边界这类线性目标的提取,同时更换原始D-Linknet网络的残差单元,帮助提高了网络的特征提取能力。(3)基于分水岭分割对耕地地块进行提取,利用了区域分割方法获取边界的封闭性,并且这种以区域为单元进行分割并合并的方式,解决了原有方法在像元尺度上基于阈值提取所遇到的提取地块存在内陷的问题,使地块更规整准确...
|