首页 | 本学科首页   官方微博 | 高级检索  
     

基于MVO优化神经网络的GNSS高程异常拟合方法
作者姓名:蒙金龙  唐诗华  张炎  何广焕  刘银涛
摘    要:针对普通神经网络的梯度消失和易陷入局部极值的问题,提出一种基于多元宇宙优化算法(multi-verse optimizer, MVO)的BP神经网络优化方法(MVO-BP),利用MVO全局寻优的特性求取BP神经网络各层之间可靠的神经元阈值与连接权,从而使神经网络预测模型具备更高的预测精度。建立基于MVO-BP算法的GNSS高程异常拟合预测模型,并采用实际工程中少量高程异常数据进行算法可行性检验。结果表明,相较于常规的BP神经网络法及多面函数法,MVO-BP法精度更高、适用性更强,可为实际工程测量中正常高的求取提供参考。

关 键 词:BP神经网络  多元宇宙优化算法  GNSS  高程异常拟合  
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号