摘 要: | 库区滑坡失稳每年不同程度影响区内人民生活和生产安全,滑坡位移精准预测对于灾害风险预警及防灾减灾十分重要。常规的位移预测方法未充分考虑降雨、库水位波动等诱发因素对滑坡变形的时滞效应,无法精确识别滞后天数及各因素的影响程度,制约了预测精度的提高。本文以三峡库区新铺滑坡为例,根据2021年度的位移监测与水文气象数据集,利用皮尔逊相关系数法定量描述了山坡尺度上降雨、库水位波动对滑坡变形的时滞效应,结合BP神经网络建立了一种考虑时滞效应的滑坡位移预测模型。分析结果表明:在山坡尺度上,库水位波动对地表变形的时滞效应明显,滞后时间呈现出从近岸向远岸逐渐增加的规律;降雨量对地表变形的时滞效应较弱,在山坡尺度上呈现相关度不高、滞后天数较短的规律;与未考虑时滞因素的模型相比,本研究中的滑坡位移预测模型拟合优度提升了55.77%,均方根误差降低了31.60%,模型预测精度显著提高。研究成果一定程度上揭示了特大型库区滑坡的变形机理,并为同类滑坡的位移精准预测提供了参考依据。
|