首页 | 本学科首页   官方微博 | 高级检索  
     检索      

黄河源区气候—植被—水文协同演变及成因辨析
引用本文:莫兴国,刘苏峡,胡实.黄河源区气候—植被—水文协同演变及成因辨析[J].地理学报,2022,77(7):1730-1744.
作者姓名:莫兴国  刘苏峡  胡实
作者单位:1.中国科学院地理科学与资源研究所 中国科学院陆地水循环及地表过程重点实验室,北京 1001012.中国科学院大学资源与环境学院/中丹学院,北京 100049
基金项目:国家重点研发计划(2018YFE0106500);中国科学院战略性先导科技专项(XDA20040301)
摘    要:全球变化下黄河源区水文过程的演变影响流域生态系统的水源涵养功能,流域植被改变也影响水循环。本文基于气候、植被信息和VIP分布式生态水文模型,开展黄河源区水碳循环要素变化的集成模拟,分析了气候—植被—水文要素的协同演变机制。结果表明,2000年以来黄河源区气候呈暖湿化趋势;植被绿度明显提高,2010—2019年比2000—2009年平均增加了4.5%;生长季延长了至少10 d;植被生产力(GPP)显著上升,倾向率为4.57 gC m-2 a-1;植被恢复措施对GPP变化的贡献约为23%,气候变化和大气CO2升高的施肥效应的贡献为77%。源区植被蒸散量(ET)呈增加趋势,倾向率为2.54 mm a-1,水分利用效率(WUE)亦提高,平均相对上升率为5.1% a-1。GPP、ET和WUE年总量及其变化率在海拔4200 m以下随高度上升而减小,之后变化趋缓。源区植被绿度和径流系数与当年和前一年降水呈显著正相关,反映降水蓄存于植物根层土壤的遗留效应。蒸散增强在一定程度上有利于源区地表—大气之间的水分再循环,帮助缓解生态恢复引起的产水能力下降,促进降水—植被—径流之间的良性互馈关系的形成。揭示水文对气候变化和植被恢复的响应和互馈机制,可为生态恢复措施对源区水源涵养功能的影响及效应的定量评估提供科学依据。

关 键 词:生态水文  蒸散  植被生产力  VIP模型  气候变化  
收稿时间:2021-07-23
修稿时间:2022-04-07

Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River
MO Xingguo,LIU Suxia,HU Shi.Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River[J].Acta Geographica Sinica,2022,77(7):1730-1744.
Authors:MO Xingguo  LIU Suxia  HU Shi
Institution:1. Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China2. College of Resources and Environment/SDC College, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Vegetation recovery under global change and its consequent evolution of eco-hydrological processes have modulated the water resources conservative capacity in the source region of the Yellow River (YRSR). Based on climatological data, remotely sensed vegetation index and geographical information, the integrated simulations of water and carbon cycles in the YRSR are presented, with the vegetation interface processes (VIP) distributed eco-hydrological dynamic model. Then the co-evolving mechanisms of hydrological and vegetation dynamics are investigated. Results show that warming and wetting climate in the YRSR has improved the vegetation growing condition and extended the growing period for more than 10 days in recent decades. Averaged NDVI from 2010 to 2020 increased by 4.5% relative to that from 2000 to 2009. Vegetation gross primary productivity (GPP) shows a significant uptrend with a rate of 4.57 gC m-2 a-1, 77% of which is contributed by climate change and elevated atmosphere CO2 fertilization, and the rest 23% is by vegetation greening. Evapotranspiration (ET) is increasing at a rate of 2.54 mm a-1 and vegetation water use efficiency (WUE, expressed as GPP/ET) is also improving at a relative rate of 5.1% a-1. Generally, annual ET, GPP and WUE and their trends are decreasing along the elevation below 4200 m. At basin scale, there are significant positive correlations between the vegetation greenness and the runoff coefficient with precipitation in the current and previous years, demonstrating a legacy effect of precipitation for vegetation recovery on water conservation capacity. The increased ET might be a benefit to the water recycle between land surface and atmosphere, which will alleviate the reduced potential of water yield owing to ecological restoration and establish trades-off and synergies among precipitation, vegetation and water yield. Conclusively, exploring the mechanisms of hydrological responses to climate change and vegetation recovery and its feedback will provide scientific support to the assessment of ecological engineering programs in the source regions.
Keywords:ecohydrology  evapotranspiration  vegetation productivity  VIP model  climate change  
点击此处可从《地理学报》浏览原始摘要信息
点击此处可从《地理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号