首页 | 本学科首页   官方微博 | 高级检索  
     


An Algebraic Method to Compute the Critical Points of the Distance Function Between Two Keplerian Orbits
Authors:Giovanni F. Gronchi
Affiliation:(1) Department of Mathematics, University of Pisa, largo Pontecorvo 5, 56127 Pisa, Italy
Abstract:We describe an efficient algorithm to compute all the critical points of the distance function between two Keplerian orbits (either bounded or unbounded) with a common focus. The critical values of this function are important for different purposes, for example to evaluate the risk of collisions of asteroids or comets with the Solar system planets. Our algorithm is based on the algebraic elimination theory: through the computation of the resultant of two bivariate polynomials, we find a 16th degree univariate polynomial whose real roots give us one component of the critical points. We discuss also some degenerate cases and show several examples, involving the orbits of the known asteroids and comets. $$acute{varepsilon}varthetavarepsilonacute{omega}rho Oupsilonnu sigmavarepsilon sigmapivarepsilonacute{upsilon}delta Onutaualpha muvarepsilontaualphasigmachivarepsilontilde{iota}nu tautilde{omega}nu pivarepsilonpirhogammamuacute{varepsilon}nuomeganuetamutilde{iota}nu varkappaomeganuiotavarkappatilde{omega}nu$$
Keywords:algebraic methods  asteroids and comets  collisions  MOID
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号