首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应多分辨率奇异值分解的大地电磁数据处理
引用本文:李晋, 马翻红, 汤井田, 李勇. 2022. 基于自适应多分辨率奇异值分解的大地电磁数据处理. 地球物理学报, 65(12): 4944-4962, doi: 10.6038/cjg2022P0662
作者姓名:李晋  马翻红  汤井田  李勇
作者单位:湖南师范大学信息科学与工程学院,长沙 410081;中南大学有色金属成矿预测与地质环境监测教育部重点实验室,长沙 410083;中国地质科学院地球物理地球化学勘查研究所,自然资源部地球物理电磁法探测技术重点实验室,河北廊坊 065000;湖南师范大学信息科学与工程学院,长沙 410081;中南大学有色金属成矿预测与地质环境监测教育部重点实验室,长沙 410083;中国地质科学院地球物理地球化学勘查研究所,自然资源部地球物理电磁法探测技术重点实验室,河北廊坊 065000
基金项目:国家自然科学基金(42074084);;国家重点研发计划项目(2018YFC0603202,2018YFE0208300);
摘    要:

针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition,AMRSVD)的大地电磁数据处理方法.首先对大地电磁数据构建Hankel矩阵,利用MRSVD得到不同分辨率的近似信号和细节信号;然后选用近似信号和细节信号的标准差差值,对大地电磁数据进行信噪辨识;接着结合MRSVD和相邻细节信号的标准差差值,提出先验信息未知情况下的AMRSVD法;最后对辨识出的强干扰运用AMRSVD去除噪声,重构有用信号.实验结果表明,该方法的处理效率高,能有效分离出相关性较强的噪声,时间序列和视电阻率-相位曲线均得到有效改善.



关 键 词:大地电磁  数据处理  多分辨率奇异值分解  自适应
收稿时间:2021-09-02
修稿时间:2021-11-16

Magnetotelluric data processing based on adaptive multi-resolution singular value decomposition
LI Jin, MA FanHong, TANG JingTian, LI Yong. 2022. Magnetotelluric data processing based on adaptive multi-resolution singular value decomposition. Chinese Journal of Geophysics (in Chinese), 65(12): 4944-4962, doi: 10.6038/cjg2022P0662
Authors:LI Jin  MA FanHong  TANG JingTian  LI Yong
Affiliation:1. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; 2. Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor, Ministry of Education, Central South University, Changsha 410083, China; 3. Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Hebei Langfang 065000, China
Abstract:
In view of the strong electromagnetic interference can easily cover up the weak useful magnetotelluric signal, combined with the advantages of singular value decomposition in denoising, a new magnetotelluric data processing method based on adaptive multi-resolution singular value decomposition (AMRSVD) is proposed. First, the Hankel matrix is constructed for the magnetotelluric data, the approximate signal and detail signal with resolution can be obtained by MRSVD. Then, the signal-noise identification of magnetotelluric data is carried out by using the standard deviation difference between the approximate signal and the detail signal. Then, combined with MRSVD and adjacent standard deviation of detail signal, AMRSVD method is proposed when prior information is unknown. Finally, the AMRSVD method is used to remove the noise for the identified strong interference and reconstruct the useful signal. The experimental results show that this method has high data processing efficiency, and it can effectively remove the noise with strong correlation, the time series and apparent resistivity-phase curves are improved obviously.
Keywords:Magnetotelluric  Data processing  Multi-resolution singular value decomposition (MRSVD)  Adaptive
本文献已被 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号