ANALYSIS OF THE COLD AIR EFFECT ON AN EXTREME PRECIPITATION EVENT TRIGGERED BY AN INVERTED TROUGH OF TYPHOON HAIKUI (1211) |
| |
Authors: | WU Hai-ying CHEN Hai-shan ZENG Ming-jian LIU An-ning WANG Wei-li |
| |
Affiliation: | Pudong New Weather Office, Shanghai Meteorological Bureau, Shanghai 200135 China |
| |
Abstract: | ![]() Based on intensive automatic weather station data, satellite cloud imagery, NCEP reanalyzed data, and the simulation results from mesoscale numerical models, this study analyzes the characteristics and formation mechanisms of the mesoscale convection system (MCS) during the extreme precipitation event that was triggered by a weakened low-pressure inverted trough of Typhoon Haikui on August 10/2012. The results of this study show that cold air at the rear of a northeastern cold vortex creates thermodynamic conditions favorable to the development of extreme precipitation. The main body of the cold air is northward located so that the cold air invades only the middle layer of the periphery of the inverted trough. Thus, the cold air minimally affects the lower layer, which results in a vertically distributed structure of the temperature advection that augments the formation and development of convective instability stratification. In the middle troposphere, the cold air encounters the convergent, ascending, warm moist air from the low-pressure inverted trough, leading to frontogenesis. The frontogenesis enhances wind convergence which, in turn, further enhances the frontogenesis, and the positive feedback between these two forces augments the development of meso- and small-scale convection systems in the rainstorm region and its vicinity, which strengthens the upward transportation of water vapor from low layers and thickening of water vapor convergence and results in local heavy rains. |
| |
Keywords: | heavy rain cold air frontogenesis mesoscale convection system (MCS) |
|
| 点击此处可从《热带气象学报(英文版)》浏览原始摘要信息 |
|
点击此处可从《热带气象学报(英文版)》下载全文 |
|