首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Application of the Maslov Seismogram Method in Three Dimensions
Authors:Chapman  Chris H  Keers  Henk
Institution:(1) High Cross, Madingley Road, Cambridge, CB3 0EL, England
Abstract:Asymptotic methods provide an efficient way to compute seismograms in heterogeneous media. However, zeroth-order ray theory, the simplest of the asymptotic methods, often fails because of the presence of caustics. Maslov theory is an extension of zeroth-order ray theory, which gives a uniformly valid expression of the wavefield everywhere, including the caustics. This result is given in terms of an integral of ray data over one or two ray parameters. It is shown in this paper how geometrical arrivals are constructed in the one and two-parameter Maslov integrals.In practice Maslov seismograms have been computed using only one ray parameter. However, in three-dimensional media two parameters are needed to uniquely define a ray. In this paper we present an efficient algorithm to compute two-parameter Maslov integrals. The Maslov integral is evaluated by computing the frequency-to-time Fourier transform prior to integration over the ray parameters. The wavefield is then discretized by smoothing with a boxcar function. The resulting expression, which only requires the results of ordinary kinematic and dynamic ray tracing, cen be computed efficiently and robustly. A numerical example is given that illustrates the use of this algorithm.
Keywords:Maslov 3D seismogram  uniform asymptotics  kinematic and dynamic ray tracing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号