首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ejective and Sweeping Motions Above a Peatland and Their Role in Relaxed-Eddy-Accumulation Measurements and Turbulent Transport Modelling
Authors:Gabriel Katul  Olli Peltola  Tiia Grönholm  Samuli Launiainen  Ivan Mammarella  Timo Vesala
Institution:1.Nicholas School of the Environment,Duke University,Durham,USA;2.Department of Civil and Environmental Engineering,Duke University,Durham,USA;3.Institute for Atmospheric and Earth System Research/Physics, Faculty of Science,University of Helsinki,Helsinki,Finland;4.Natural Resources Institute Finland,Environmental Impacts of Production,Helsinki,Finland;5.Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry,University of Helsinki,Helsinki,Finland
Abstract:The three turbulent velocity components, water vapour (\(\text {H}_2\text {O}\)), carbon dioxide (\(\text {CO}_{2}\)), and methane (\(\text {CH}_{4}\)) concentration fluctuations are measured above a boreal peatland and analyzed using conditional sampling and quadrant analysis. The overarching question to be addressed is to what degree lower-order cumulant expansion methods describe transport efficiency and the relative importance of ejections and sweeps to momentum, \(\text {CH}_{4}\), \(\text {CO}_{2}\) and \(\text {H}_2\text {O}\) fluxes across a range of atmospheric flow regimes. The patchy peatland surface creates distinctly different source and sink distributions for the three scalars in space and time thereby adding to the uniqueness of the set-up. The measured and modelled fractional contributions to the momentum flux show that sweep events dominate over ejections in agreement with prior studies conducted in the roughness sublayer. For scalar fluxes, ejections dominate the turbulent fluxes over sweeps. While ejective motions persist longer for momentum transport, sweeping events persist longer for all three scalars. Third-order cumulant expansions describe many of the results detailed above, and the results are surprising given the highly non-Gaussian distribution of \(\text {CH}_{4}\) turbulent fluctuations. Connections between the asymmetric contributions of sweeps and ejections and the flux-transport term arising in scalar turbulent-flux-budget closure are derived and shown to agree reasonably well with measurements. The proposed model derived here is much simpler than prior structural models used to describe laboratory experiments. Implications of such asymmetric contributions on, (i) the usage of the now proliferating relaxed-eddy-accumulation method in turbulent flux measurements, (ii) the constant-flux assumption, and (iii) gradient-diffusion closure models are presented.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号