首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ionospheric Scintillation and Dynamics of Fresnel-Scale Irregularities in the Inner Region of the Equatorial Ionization Anomaly
Authors:Marcio T A H Muella  Eurico R de Paula  Alan A Monteiro
Institution:1. Laboratório de Física e Astronomia, IP&D, Universidade do Vale do Paraíba, S?o José dos Campos, S?o Paulo, 12244-000, Brazil
2. Divis?o de Aeronomia, Instituto Nacional de Pesquisas Espaciais, S?o José dos Campos, S?o Paulo, 12227-010, Brazil
Abstract:This paper reports differences in the occurrence statistics of global positioning system (GPS) L-band scintillations at observational sites located in the inner regions of the northern and southern crests of the equatorial ionization anomaly. Ground-based GPS data acquired at the closed magnetically aligned stations of Manaus (3.1°S; 59.9°W; dip lat. 6.2°N) and Cuiabá (15.5°S; 56.1°W; dip. lat. 6.2°S), Brazil, from December 2001 to February 2007 are used in the analysis. The drift dynamics of Fresnel-scale ionospheric irregularities at the southern station of Cuiabá are also investigated. Only geomagnetically quiet days with the sum of daily Kp < 24 were used in the analysis statistics and in the irregularity drift studies. The results reveal a clear dependence of the scintillation occurrence with the solar activity, but there exists an asymmetry in the percentage of scintillation occurrence between the two stations throughout the period analyzed. The nocturnal occurrence of the scintillations over Cuiabá is predominantly larger than over Manaus, but this scenario seems to change with the decline in the solar activity (mainly during local post-midnight hours). A broad minimum and maximum in the scintillation occurrence appears to occur over both the stations, respectively, during the June solstice (winter) and December solstice (summer) months. The dynamics of the Fresnel-scale irregularities, as investigated from the estimations of the mean zonal drift velocities, reveals that the amplitude of the eastward drifts tends to reduce with the decline in the solar activity. The magnitude of the zonal drift velocities during the December solstice months is larger than during the equinoxes, with the differences being more pronounced at solar maximum years. Other relevant aspects of the observations, with complementary data from a low-latitude ionospheric model, are highlighted and discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号