首页 | 本学科首页   官方微博 | 高级检索  
     

古尔班通古特沙漠灌木冠幅预测模型
引用本文:王明娜,张定海,张志山,路丽宁. 古尔班通古特沙漠灌木冠幅预测模型[J]. 中国沙漠, 2022, 42(4): 139-150. DOI: 10.7522/j.issn.1000-694X.2022.00001
作者姓名:王明娜  张定海  张志山  路丽宁
作者单位:1.甘肃农业大学,财经学院,甘肃 兰州 730070;2.甘肃农业大学,理学院,甘肃 兰州 730070;3.中国科学院西北生态环境资源研究院 沙坡头沙漠研究试验站,甘肃 兰州 730000
基金项目:甘肃省自然科学基金项目(21JR7RA831);国家自然科学基金项目(41661022);甘肃农业大学盛彤笙创新基金项目(GAU-CX1121)
摘    要:
古尔班通古特沙漠是中国第二大沙漠,也是中国固定和半固定沙丘主要分布区,固沙灌木种较多。冠幅不仅是反映固沙灌木可视化的重要参数,也是反映沙漠植被生长情况的重要变量。以3种沙丘(固定沙丘、半固定沙丘和流动沙丘)上主要固沙灌木为研究对象,利用12种基础模型、BP(Backpropagation Neural Network)神经网络和支持向量机(Support Vector Machine,SVM)机器学习算法建立了基于固沙灌木株高和冠长率的冠幅预测模型,同时将两种机器学习算法拟合结果与基础模型进行比较,最终选出了适合研究区的冠幅预测模型。结果表明:(1)不同沙丘类型和不同灌木种类的最优冠幅预测模型不同,且固定沙丘和半固定沙丘模型优于流动沙丘。3种沙丘类型最优拟合为M2(Quadratic Model)模型;(2)白梭梭(Haloxylon persicum)在半固定沙丘和流动沙丘上拟合的最优模型分别为M2、M7(Gompertz),沙拐枣(Calligonum mongolicum)最优模型为M2,蛇麻黄(Ephedra distachya)和油蒿(Artemisia ordosica)在...

关 键 词:株高  冠幅  冠长率  基础模型  BP神经网络  SVM支持向量机
收稿时间:2021-09-26
修稿时间:2022-01-13

Canopy width prediction models for the Gurbantunggut Desert
Mingna Wang,Dinghai Zhang,Zhishan Zhang,Lining Lu. Canopy width prediction models for the Gurbantunggut Desert[J]. ournal of Desert Research, 2022, 42(4): 139-150. DOI: 10.7522/j.issn.1000-694X.2022.00001
Authors:Mingna Wang  Dinghai Zhang  Zhishan Zhang  Lining Lu
Affiliation:1.School of Finance and Economics /, Gansu Agricultural University,Lanzhou 730070,China;2.College of Science, Gansu Agricultural University,Lanzhou 730070,China;3.Shapotou Desert Research and Experimental Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
Abstract:
The Gurbantunggut Desert, the main distribution area of fixed and semi-fixed dunes, is the second largest desert in China with a relatively large variety of sand-fixing shrubs. The canopy width is an essential parameter for the visualization of sand-fixing shrubs, which is also a necessary variable for the growth of desert vegetation. The purpose of this study was to assess the main sand-fixing shrubs on three types of sand dunes (fixed, semi-fixed, mobile dunes) in the sand zone. The experiment uses 12 base models, Backpropagation Neural Network (BP), Support Vector Machine (SVM) machine learning algorithms to develop a canopy width prediction model based on the height and crown length rate of sand-fixing shrubs. To compare the two machine learning algorithm fits,canopy prediction models suitable for the experiment was selected. The results were as follows: (1) The different optimal canopy width prediction models had a difference in dune types and shrub species, and the fixed and semi-fixed dune models outperform the mobile dune models. The three dune types were optimally fitted to the M2 (Quadratic Model) model. (2) The optimal models fitted for Haloxylon persicum on semi-fixed and mobile dunes were M2 and M7(Gompertz) model, respectively. The best-fitting model for Calligonum mongolicum was M2 model. In contrast, the better-fitting models for Serpentine and Artemisia ordosica were M2 and M7 model on semi-fixed and mobile dunes, respectively. Generally, the models of M2 and M7 had a better predictors of different types of shrub crown width values. (3) The Radial Basis Function (RBF) kernel-based support vector regression machine was better than the BP neural network model in crown width prediction.
Keywords:plant height  crown width  crown length rate  base model  BP neural network  support vector machine  
点击此处可从《中国沙漠》浏览原始摘要信息
点击此处可从《中国沙漠》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号