首页 | 本学科首页   官方微博 | 高级检索  
     

EnKF协方差膨胀算法对雷达资料同化的影响研究
作者姓名:高士博  闵锦忠  黄丹莲
作者单位:南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;南京信息工程大学 气象灾害教育部重点实验室, 南京 210044,南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;南京信息工程大学 气象灾害教育部重点实验室, 南京 210044,南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;南京信息工程大学 气象灾害教育部重点实验室, 南京 210044
基金项目:国家重点基础研究发展计划项目(2013CB430102);江苏省普通高校研究生科研创新计划项目(KYLX_0829);江苏省普通高校研究生科研创新计划项目(KYLX_0844);国家自然科学基金重点项目(41430427)和江苏省高校自然科学重大基础研究项目(11KJA170001)
摘    要:基于集合卡尔曼滤波(EnKF)方法同化模拟雷达径向风和回波,引入具有时空自适应理论优势的贝叶斯膨胀算法,通过与常数膨胀算法的对比,分析了两种协方差膨胀算法对EnKF同化效果的影响。结果表明:在对流区域的北侧,由贝叶斯膨胀算法分析得到的回波在水平和垂直结构上均增强;在对流区域,由贝叶斯膨胀算法分析得到的各变量的集合离散度增大,均方根误差减小,水平和垂直速度增大,冷池强度减弱;模拟还发现贝叶斯膨胀算法提高了强对流系统的模拟效果,回波强度增强,阵风锋区内水平和垂直风速增大。这表明贝叶斯膨胀算法有效地改进了基于常数膨胀算法的EnKF同化雷达资料的效果。

关 键 词:集合卡尔曼滤波  雷达资料同化  贝叶斯膨胀算法  常数膨胀算法
收稿时间:2015-01-21
修稿时间:2015-11-30
本文献已被 CNKI 等数据库收录!
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载全文
正在获取引用信息,请稍候...
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号