首页 | 本学科首页   官方微博 | 高级检索  
     


Helium on Mars and Venus: EUVE observations and modeling
Authors:Vladimir A. Krasnopolsky  G. Randall Gladstone
Affiliation:a Catholic University of America, Department of Physics, Washington, DC 20064, USA
b Southwest Research Institute, San Antonio, TX 78228, USA
Abstract:
Long-exposure spectroscopy of Mars and Venus with the Extreme Ultraviolet Explorer (EUVE) has revealed emissions of He 584 Å on both planets and He 537 Å/O+ 539 Å and He+ 304 Å on Venus. Our knowledge of the solar emission at 584 Å, eddy diffusion in Mars' upper atmosphere, electron energy distributions above Mars' ionopause, and hot oxygen densities in Mars' exosphere has been significantly improved since our analysis of the first EUVE observation of Mars [Krasnopolsky, Gladstone, 1996, Helium on Mars: EUVE and Phobos data and implications for Mars' evolution, J. Geophys. Res. 101, 15,765-15,772]. These new results and a more recent EUVE observation of Mars are the motivation for us to revisit the problem in this paper. We find that the abundance of helium in the upper atmosphere, where the main loss processes occur, is similar to that in the previous paper, though the mixing ratio in the lower and middle atmosphere is now better estimated at 10±6 ppm. Our estimate of the total loss of helium is almost unchanged at 8×1023 s−1, because a significant decrease in the loss by electron impact ionization above the ionopause is compensated by a higher loss in collisions with hot oxygen. We neglect the outgassing of helium produced by radioactive decay of U and Th because of the absence of current volcanism and a very low upper limit to the seepage of volcanic gases. The capture of solar wind α-particles is currently the only substantial source of helium on Mars, and its efficiency remains at 0.3. A similar analysis of EUV emissions from Venus results in a helium abundance in the upper atmosphere which is equal to the mean of the abundances measured previously with two optical and two mass spectrometers, and a derived helium mixing ratio in the middle and lower atmosphere of 9±6 ppm. Helium escape by ionization and sweeping out of helium ions by the solar wind above the ionopause is smaller than that calculated by Prather and McElroy [1983, Helium on Venus: implications for uranium and thorium, Science 220, 410-411] by a factor of 3. However, charge exchange of He+ ions with CO2 and N2 between the exobase and ionopause and collisions with hot oxygen ignored previously add to the total loss which appears to be at the level of 106 cm−2 s−1 predicted by Prather and McElroy [1983, Science 220, 410-411]. The loss of helium is compensated by outgassing of helium produced by radioactive decay of U and Th and by the capture of the solar wind α-particles with an efficiency of 0.1. We also compare our derived α-particle capture efficiencies for Mars and Venus with observed X-ray emissions resulting from the charge exchange of solar wind heavy ions with the extended atmospheres on both planets [Dennerl et al., 2002, Discovery of X-rays from Venus with Chandra, Astron. Astrophys. 386, 319-330; Dennerl, 2002, Discovery of X-rays from Mars with Chandra, Astron. Astrophys. 394, 1119-1128]. The emissions from both disk and halo on Mars agree with our calculated values; however, we do not see a reasonable explanation for the X-ray halo emission on Venus. The ratio of the charge exchange efficiencies derived from the disk X-ray emissions of Mars and Venus is similar to the ratio of the capture efficiencies for these planets. The surprisingly bright emission of He+ at 304 Å observed by EUVE and Venera 11 and 12 suggests that charge exchange in the flow of the solar wind α-particles around the ionopause is much stronger than in the flow of α-particles into the ionosphere.
Keywords:Mars, atmosphere   Venus, atmosphere   Abundances, atmospheres   Atmospheres, composition   Ultraviolet observation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号