首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Morphologic and gravimetric investigations of Bell and Eisila Regiones on Venus
Authors:P Janle  D Jannsen  A T Basilevsky
Institution:(1) Institut für Geophysik der Universität Kiel, F.R.G.;(2) Vernadsky Institute of Geochemistry, USSR Academy of Sciences, Moscow, U.S.S.R.
Abstract:Bell Regio is a highland fragment south of Ishtar Terra, extending 1300 km in N-S direction and 900 km in E-W direction. South of this region Eisila Regio is located with an E-W extension of 8000 km and a width of 2000 km. Bell Regio consists of two large massifs: a northern massif with maximum altitudes of 2.5 to 3.0 km above the 6051 km datum and with a semi-corona (other coronae on Venus are associated with volcanic-tectonic processes) and a southern massif with a maximum of 4 to 4.5 km above the datum. The possible shield volcano Tepev Mons of 250 km in diameter is superimposed on the southern massif. It shows a radar dark crater of 40 km diameter on its eastern flank, a crater-like feature of 15 km diameter on the top and a radar bright area extending from the dark crater across the summit. South of Tepev Mons are several volcanic structures with summit depressions. The crest of Bell Regio exhibits a N-S extending fossa system. The whole fresh appearing plain-like area has been classified as rather young compared to other units. Gravity data show a maximum of 33 mGal at Bell Regio and 35 mGal at eastern Eisila Regio. The basins north and south of the highland fragments are associated with gravity lows.Density models have been calculated along the gravity profile Rev. 163 of Pioneer Venus Orbiter across Bell and Eisila Regiones assuming Airy isostatic compensation of the topography and considering several boundary conditions (e.g. mean crustal thickness T<- 100 km). There are two groups of density models in the case of Airy compensation. In the first group global total compensation is assumed along the profile and regional partial compensation for Bell and Eisila Regiones. This solution gives a range of possible models with 10 km <- T <- 100 km and a partial compensation for Bell and Eisila Regiones between 12% and 55%. Thus these two highland fragments show subsurface surplus masses.The second group of models considers for the whole profile total compensation with a global T <- 100 km and a regional very large depth of compensation for Bell and Eisila Regiones, i.e. T > 100 km.The highland of Beta Regio has, like Bell Regio, a N-S rifting system, volcanic structures, a fresh appearing plain-like surface and either deep-seating compensating masses or near surface surplus masses. Bell can be considered as little sister of Beta. The geological and geophysical results imply a volcanic-tectonic uplift over a hot spot. The conditions of Atla Regio in eastern Aphrodite Terra are similar. Thus the existence of volcanic-tectonic uplifts support the important role of hot spot volcanism on Venus.Contribution Nr. 343, Institut für Geophysik der Universität Kiel, F.R.G.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号