首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of increased nitrogen fixation on stratospheric ozone
Authors:Parker F Pratt
Institution:(1) Dept. of Soil Science and Agricultural Engineering, University of California, 92521 Riverside, Calif., USA
Abstract:Nitrogen compounds are produced by biological reactions and by industrial processes from the abundant nitrogen gas (N2) in the atmosphere. The formation of compounds from atmospheric nitrogen is called fixation. In nature, nitrogen compounds undergo many conversions, but under aerobic conditions, characterized by the presence of oxygen, they tend to be converted to the nitrate (NO 3 - ) form. Under anaerobic conditions, characterized by the absence of oxygen, the nitrate is denitrified, and the nitrogen contained therein is converted into nitrogen gas (N2) and nitrous oxide (N2O), which escape into the atmosphere. The nitrous oxide diffuses into the stratosphere, where it decomposes to yield nitrogen gas and small amounts of nitric oxide (NO) and nitrogen dioxide (NO2), which react with ozone (O3) to convert it to oxygen (O2). The ozone in the stratosphere is produced by the reaction of light with oxygen and is destroyed primarily by reactions with the nitrogen oxides.As long as the production and destruction are equal, the ozone in the stratosphere is maintained at a constant concentration. Increased nitrogen fixation will lead to increased denitrification, increased amount of nitrous oxide moving into the stratosphere, and a reduction in ozone concentration.Ozone in the stratosphere attenuates the ultraviolet light received from the sun. As the ozone concentration decreases, more ultraviolet light will reach the surface of the earth. The fear is that this additional radiation will have detrimental effects on living organisms and possibly on the climate.Because the global use of fixed nitrogen in fertilizers has increased greatly in recent years and in 1974 amounted to almost 40 million metric tons, the eventual generation of nitrous oxide from the fertilizer nitrogen after application to the soil has been cited as a potential environmental hazard. In response to this concern, this document estimates nitrogen fixation, nitrous oxide production, and ozone reduction based on two methods of calculation and on various increases in nitrogen fixation. Uncertainties and information gaps in the nitrogen cycle are pointed out.This document does not review either the projected biological effects of ozone depletion or the stratospheric chemistry of ozone. These topics are dealt with at length in other studies.World fixation of nitrogen in 1974, expressed in millions of metric tons per year (MT/yr), was estimated to be as follows.Most of the estimates given are based on inadequate data; consequently, actual amounts may be significantly different from those shown. The study of nitrogen fixed in the oceans has not progressed far enough to permit reliable estimates. However, estimates of the amount of nitrogen fixed for fertilizer and other industrial uses in 1974 are considered reliable. The trend of industrial fixation of nitrogen offers some indication of the trend in total amount of nitrogen fixed. It is estimated that 174 MT of nitrogen were fixed by all processes in 1950. Total fixation in 1850 could have been 150 MT of nitrogen.Nitrous oxide-nitrogen production on land is estimated as 5 to 10 MT/yr; published estimates of production in the ocean, however, range from less than 1 to 100 MT/yr. The higher value was based on reported supersaturation of ocean waters with nitrous oxide.Two methods of estimating the decrease in ozone concentration in the stratosphere were used. Method I is based on nitrogen fixation. It involves the assumptions that the relative increase in production of nitrous oxide is proportional to the relative increase in total nitrogen fixation and that sufficient time has elapsed for the rate of denitrification to come to equilibrium with fixation; i.e., the lag time between increased fixation and increased denitrification has passed. This method, using fixation estimated for 1950 as a base, suggests that the reduction in ozone would be 5.8 and 11.5% as a consequence of increased fixation of 50 and 100 MT of nitrogen per year, respectively.Method II is based on nitrous oxide evolution. It involves the assumption that the global rate of production of nitrous oxide is 100 MT/yr (based on supersaturation of this gas in the ocean and on changes in measured concentrations of nitrous oxide in the atmosphere). Method II leads to estimates of ozone reduction much lower than those from Method I. For example, on the assumption that global production of nitrous oxide-nitrogen is 100 MT/yr and that 5% of the nitrogen denitrified is released as nitrous oxide, the estimated ozone reduction is 1% with an increase of 100 MT/yr in nitrogen fixation. This method is forced to assume an unknown source of nitrous oxide in the ocean and an unknown sink for nitrous oxide in the troposphere.There are great uncertainties in many of the estimates that have been made for nitrogen fixation and for nitrous oxide production, and there are many information gaps that need to be filled before the question of the effects of increased nitrogen fixation on the ozone layer can be answered. Perhaps the biggest information needs are in the areas of nitrogen transformations and the quantities of nitrous oxide produced in the ocean. Other needs deal with the complexities of the nitrogen cycle on land. The lag time between fixation by various processes and denitrification must be known as a basis for estimating how soon predicted effects based on equilibrium conditions can be expected. Concentrations of nitrous oxide and their fluctuations in the troposphere (lower atmosphere) need to be monitored to provide an index to variations and increases in production. Improved models are needed to relate the ozone concentration in the stratosphere to nitrogen fixation and nitrous oxide production on earth.In spite of the uncertainties in the predictions of the effects of increased fixation of nitrogen on stratospheric ozone, the potential hazard is sufficiently serious that, in addition to research on the various phases of the global nitrogen cycle that impinge upon the nitrous oxide-ozone question, research on the efficiency of use of all fixed forms of nitrogen should be worthwhile. Editor's Note: Although the data for sources, sinks, reservoirs, and rate processes in this article are undergoing rapid revision presently, it, nonetheless, is one of the clearest statements of the physics, chemistry, and biology of the fertilizer/ozone problem available to date.This report was developed by eleven scientists (see Appendix 1 for names and affiliations) representing the subject matter areas of atmospheric chemistry, chemical engineering, environmental science and chemistry, microbiology, oceanography, plant genetics, soil biochemistry, soil physics, and soil chemistry. This task force of scientists chaired by Parker F. Pratt, met under the auspices of the Council for Agricultural Science and Technology (CAST), whose headquarters office is at the Department of Agronomy, Iowa State University, Ames, Iowa 50011, U.S.A. The task force met in Denver, Colorado from October 23 to 25, 1975, to prepare a first draft of the report. The chairman then prepared a revised version and returned it to members of the task force for review and comment. A second revision was then prepared and returned for further comment. Finally, the report was edited and reproduced for transmittal through the U.S. Congressional Committees concerned with the matter of ozone depletion. It was originally issued as a CAST Report Number 53, January, 1976, but had not been formally published heretofore.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号