首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Atmospheric Boundary Layer In An Arctic Wintertime On-Ice Air Flow
Authors:Burghard Brümmer  Stefan Thiemann
Institution:(1) Meteorological Institute, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Abstract:A warm on-ice air flow from the open water over the Arctic sea ice in the Fram Straitwas, for the first time, systematically measured on 12 March 1998 by aircraft in thelowest 3 km over a 300-km long distance. The air mass modification and the processesinvolved are discussed.Over the water, air temperature was lower than water temperature so that a convectiveboundary layer (CBL) was present as initial condition. As soon as the CBL passed theice edge, a shallow stable internal boundary layer (IBL) was formed. In the residual CBL, turbulence and pre-existing convective clouds dissolved within about 20 km. Within about the same distance, due to the transition from unstable to stable stratification, the influence of surface friction increased in the IBL and decreased above the IBL with consequent generation of a low-level jet at IBL top. The IBL was strongly stratified with respect to both temperature and wind. The wind shear was around 0.1 s-1 so that the Richardson number in the IBL was subcritical and turbulence was generated. The IBL top grew to about 145 m over 230 km distance. The growth of the IBL was not monotonic and was influenced by (a) inhomogeneous ice surface temperatures causedby both different ice thickness and changes in the cloud conditions, and (b) leads in theice deck. At the front side of the on-ice flow, the air mass boundary between the warmair and the cold Arctic air was sharp (12 K over 10 km) at low levels and tilted withheight. Observations suggest that the stratified IBL was lifted as a slab on top of thecold air.
Keywords:Arctic boundary layer  Ice-air interaction  Low-level jet  On-ice air flow
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号