首页 | 本学科首页   官方微博 | 高级检索  
     

选主元矩阵原位替换解算方法
引用本文:黑志坚,张洪田,周秋生. 选主元矩阵原位替换解算方法[J]. 测绘科学, 2010, 35(3): 149-152
作者姓名:黑志坚  张洪田  周秋生
作者单位:黑龙江工程学院测绘工程系,哈尔滨,150008;黑龙江工程学院测绘工程系,哈尔滨,150008;黑龙江工程学院测绘工程系,哈尔滨,150008
基金项目:黑龙江省自然科学基金 
摘    要:
矩阵行列式、矩阵方程未知数和矩阵逆阵元素,可采用矩阵原位替换解算方法,利用矩阵元素约化值进行解算,但矩阵元素约化值计算过程中要求矩阵主元约化值不能等于零,在没有确认矩阵是否满秩的情况下,其值等于零有可能由矩阵元素排列结构引起,也有可能由矩阵秩亏引起,如何判别矩阵主元约化值为零的成因,在排除矩阵秩亏的情况下,如何利用选主元矩阵原位替换解算方法继续完成相应矩阵解算,是本文研究的内容。该研究可使矩阵原位替换解算方法得到更加广泛的应用。

关 键 词:矩阵  秩亏判断  选主元  原位替换解算

The in-situ replacement calculation method of choosing principle component matrix
HEI Zhi-jian,ZHANG Hong-tian,ZHOU Qiu-sheng. The in-situ replacement calculation method of choosing principle component matrix[J]. Science of Surveying and Mapping, 2010, 35(3): 149-152
Authors:HEI Zhi-jian  ZHANG Hong-tian  ZHOU Qiu-sheng
Abstract:
Matrix determinant,matrix equation unknown element and inverse matrix element can be calculated by matrix element reduction using matrix in-situ replacement calculation method.But the matrix principle component reduction can not be zero during the process of matrix element reduction calculation.When it doesn't confirm the matrix is full rank or not,the arrangement structure of matrix element may cause its value being zero,or the matrix low rank may cause that.How to differentiate the reason of matrix principle component zero value? When excluding the matrix low rank,how to use the in-situ replacement calculation method of choosing principle component matrix to continue calculate the according matrix? That is studied in this paper.And the study will spread the application of the matrix in-situ calculation method.
Keywords:matrix  low rank differentiate  choosing principle component  in-situ replacement calculation HEI
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号