首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘拟合模型和PCA变换的影像融合
引用本文:姜咏耀,宋经纬,卢昊. 基于最小二乘拟合模型和PCA变换的影像融合[J]. 测绘信息与工程, 2011, 36(6): 43-45
作者姓名:姜咏耀  宋经纬  卢昊
作者单位:武汉大学遥感信息工程学院,武汉市珞喻路129号,430079
摘    要:
针对传统的PCA变换融合法,利用高空间分辨率影像与多光谱影像的线性相关特性,提出了一种基于最小二乘模型和PCA变换的影像融合方法,采用偏差指数、相关系数和信息熵三个指标,对融合结果进行了定量评价。试验结果表明,在提高了多光谱影像空间分辨率的同时,更好地保留了多光谱影像的光谱信息。

关 键 词:最小二乘法  线性拟合  PCA变换  偏差指数

A Fusion Method Based on Least Squares Model and Principal Component Analysis
JIANG Yongyao SONG Jingwei LU Hao. A Fusion Method Based on Least Squares Model and Principal Component Analysis[J]. Journal of Geomatics, 2011, 36(6): 43-45
Authors:JIANG Yongyao SONG Jingwei LU Hao
Affiliation:JIANG Yongyao SONG Jingwei LU Hao(School of Remote Sensing and Information Engineering,Wuhan University,129 Luoyu Road,Wuhan 430079,China)
Abstract:
Based on the liner correlation between the high resolution image and the multi-spectral image,propose new fusion method in which the least square model is combined with the PCA fusion method.The result is evaluated by the deviation index,the correlation coefficient and information entropy of the fusion image.The results show that this method remarkably increasing the spatial resolution as well as reserving the multi-spectral information.
Keywords:least squares method  liner correlation  principle component analysis  deviation index
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号