首页 | 本学科首页   官方微博 | 高级检索  
     


A location-aware GIServices quality prediction model via collaborative filtering
Authors:Qingxi Peng  Na Dong
Affiliation:1. State Key Lab of Software Engineering, Wuhan University, Wuhan, People's Republic of China;2. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
Abstract:The quality of GIServices (QoGIS) is an important consideration for services sharing and interoperation. However, QoGIS is a complex concept and difficult to be evaluated reasonably. Most of the current studies have focused on static and non-scalable evaluation methods but have ignored location sensitivity subsequently resulting in the inaccurate QoGIS values. For intensive geodata and computation, GIServices are more sensitive to the location factor than general services. This paper proposes a location-aware GIServices quality prediction model via collaborative filtering (LAGCF). The model uses a mixed CF method based on time zone feature from the perspectives of both user and GIServices. Time zone is taken as the location factor and mapped into the prediction process. A time zone-adjusted Pearson correlation coefficient algorithm was designed to measure the similarity between the GIServices and the target, helping to identify highly similar GIServices. By adopting a coefficient of confidence in the final generation phase, the value of the QoGIS most similar to the target services will play a dominant role in the comprehensive result. Two series of experiments on large-scale QoGIS data were implemented to verify the effectivity of LAGCF. The results showed that LAGCF can improve the accuracy of QoGIS prediction significantly.
Keywords:Location-aware  QoGIS  quality prediction  GIServices  collaborative filtering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号