首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The composition of liquids coexisting with dense hydrous magnesium silicates at 11-13.5 GPa and the endpoints of the solidi in the MgO-SiO2-H2O system
Authors:Elena Melekhova  Max W Schmidt  Peter Ulmer
Institution:a Institute of Mineralogy and Petrology, ETH Zurich, Clausiusstrasse 25, CH-8092 Zurich, Switzerland
b Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH-3012 Bern, Switzerland
Abstract:High-pressure liquids in the MgO-SiO2-H2O (MSH) system have been investigated at 11 and 13.5 GPa and between 1000 and 1350 °C. A bulk composition more magnesian than the tie-line forsterite-H2O was employed for the study. Rocking multi-anvil experiments were combined with a diamond trap set-up. After termination of the experiments, the liquid trapped in the diamond layer was analysed by laser ablation ICP-MS using the ‘freezing’ technique. At 11 GPa, liquids coexist with one or two of phase A, clinohumite, chondrodite, and forsterite. A marked discontinuity in the evolution of liquid compositions near 1100 °C is observed at 11 GPa. A step of ∼13 wt% H2O and 13 wt% MgO is interpreted to result from overstepping the fluid-saturated solidus reaction mass balanced to 1.00(18) phase A + 1.07(4) fluid = 0.63(15) chondrodite + 1.44(2) melt. At 13.5 GPa liquids coexist with one or two of hydrous wadsleyite, clinohumite, superhydrous B, phase B, and forsterite. The discontinuity in liquid composition is no longer present, indicating that the second critical endpoint of the solidus has been overstepped. Thus, hydrous melts in the Mg-rich part of the MSH system (molar bulk Mg/Si > 2) are chemically distinct from aqueous fluids at pressure up to 11 GPa. Convergence of fluid and melt compositions along the solidus resulting in a supercritical liquid occurs between 11 and 13.5 GPa, at which pressure the entire MSH system becomes supercritical.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号