首页 | 本学科首页   官方微博 | 高级检索  
     

降雨量及叠加预测方法研究
引用本文:舒涛,叶唐进,李俊杰,李豪. 降雨量及叠加预测方法研究[J]. 高原气象, 2021, 40(1): 169-177
作者姓名:舒涛  叶唐进  李俊杰  李豪
作者单位:西藏大学工学院,西藏拉萨850000;西藏大学工学院,西藏拉萨850000;大连理工大学建设工程学部,辽宁大连116024
基金项目:大学生创新性实验训练计划项目(2018QCX024);国家自然科学基金项目(41662020,51769033)。
摘    要:为了得到精确度较高的降雨量预测值及其叠加预测精度,利用小波神经网络和NARX动态神经网络对降雨趋势和降雨量进行预测,并分析降雨量叠加预测值的误差.研究表明,小波神经网络分析的月降雨量多个变化周期以及总的变化趋势较为准确;NARX动态神经网络预测模型测试误差为0.21%,回归效果图的相关系数R为0.99993,回判和检验...

关 键 词:降雨量  预测方法  NARX动态神经网络  小波神经网络  叠加预测

Analysis of Prediction Method for Rainfall and Superposition Rainfall
SHU Tao,YE Tangjin,LI Junjie,LI Hao. Analysis of Prediction Method for Rainfall and Superposition Rainfall[J]. Plateau Meteorology, 2021, 40(1): 169-177
Authors:SHU Tao  YE Tangjin  LI Junjie  LI Hao
Affiliation:(College of Engineering,Tibet University,Lhasa 850000,Tibet,China;Department of Construction Engineering,Dalian University of Technology,Dalian 116024,Liaoning,China)
Abstract:In order to obtain High-precision rainfall predictive value and Superposition Prediction,Wavelet Neural Network and NARX Dynamic Neural Network methods are used to provide prediction of rainfall trends,rainfall amounts,and also to analyze the error of the superposed predictive value of rainfall. The results shows that the Wavelet Neural Network provide accurately in analyzing the monthly rainfall multiple variation periods and the overall variation trend;as the error test value of NARX Dynamic Neural Network prediction model is 0. 21%,the correlation coefficient R of regression renderings is 0. 99993,and feedback and test error value are only 0. 22% and 0. 40% respectively;the errors of superposed prediction and test of rainfall are small,less than 2%,which can meet the requirement of continuous superposed prediction of rainfall. This method will provide high-precision predictive value of rainfall for the prediction of slope dynamic stability.
Keywords:Rainfall  prediction method  NARX dynamic neural network  wavelet neural network  superposition prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号