摘 要: | 
地质表格信息提取是地质报告从信息转换到知识阶段的重要任务之一,对将非结构化的数据转化为结构化的地学知识具有重要意义,同时还为文本与表格的知识关联提供了技术支撑。然而现有的表格解析方法在地学领域存在局限性,在单元格提取中,地质表格中大量的合并单元格造成了不同单元格间大小差异大,大量小面积单元格无法被提取;在表格解析方面地质表格包含了大量的被斜线分割的特殊表头,难以自动化解析。为解决上述问题,本文提出了一种基于注意力机制的Mask RCNN单元格提取模型及基于OpenCV框架的表格结构解析方法。 主要包括两个步骤:1)上下文注意模块(CAM)学习上下文特征以识别不同大小单元格;2)一种标准容错机制的复杂表头解析方法,解析含斜线分割的复杂表头单元格。在构建的地质表格数据集上进行模型性能评估,该方法对于多数地质表格的解析准确率达到95% 以上;相比其他单元格识别和表格结构解析方法,该方法解析效果更优。

|