首页 | 本学科首页   官方微博 | 高级检索  
     

基于一维卷积神经网络的高分辨率Radon变换反演方法研究
引用本文:薛亚茹, 郭蒙军, 冯璐瑜, 马继涛, 陈小宏. 2022. 基于一维卷积神经网络的高分辨率Radon变换反演方法研究. 地球物理学报, 65(9): 3610-3622, doi: 10.6038/cjg2022P0350
作者姓名:薛亚茹  郭蒙军  冯璐瑜  马继涛  陈小宏
作者单位:1. 中国石油大学(北京)信息科学与工程学院, 北京 102249; 2. 中国石油大学(北京)地球物理学院, 北京 102249
基金项目:国家科技重大专项子课题(2016ZX05024-001-004)和中国石油科技创新基金项目(2020D-5007-0301)联合资助
摘    要:

高分辨率Radon变换是地震资料处理常用的方法之一,其反演通常涉及矩阵求逆、多次迭代等环节,这些因素导致Radon变换反演计算量大,收敛速度慢等问题.本文在分析Radon变换分辨率降低原因基础上,提出基于一维卷积神经网络(Convolutional Neural Network,CNN)的高分辨率Radon变换反演方法.该方法通过卷积神经网络的非线性表征能力实现低分辨率Radon参数到高分辨率Radon参数的映射,分析了基于反褶积原理的串联映射模型和基于残差学习的并联映射模型提高分辨率的原理.
将上述CNN网络得到的特定频率Radon参数约束其他频率参数的反演,避免了分频训练的弊端.模拟数据和实际数据的多次波压制实验表明,本文提出的基于一维卷积神经网络的高分辨率Radon变换可以较好地压制多次波,且计算效率高.




关 键 词:Radon变换   卷积神经网络   反演方法   频率约束   多次波压制
收稿时间:2021-05-24
修稿时间:2022-04-13

High resolution Radon transform inversion based on one dimensional convolutional neural network
XUE YaRu, GUO MengJun, FENG LuYu, MA JiTao, CHEN XiaoHong. 2022. High resolution Radon transform inversion based on one dimensional convolutional neural network. Chinese Journal of Geophysics (in Chinese), 65(9): 3610-3622, doi: 10.6038/cjg2022P0350
Authors:XUE YaRu  GUO MengJun  FENG LuYu  MA JiTao  CHEN XiaoHong
Affiliation:1. College of Information Science and Engineering, China University of Petroleum, Beijing 102249, China; 2. College of Geophysics, China University of Petroleum, Beijing 102249, China
Abstract:
The high resolution Radon transform is one of the commonly used methods in seismic data processing. Its inversion usually involves matrix inversion, multiple iterations, hyperparameter selection et al. These factors lead to problems such as a large amount of calculation and a slow convergence rate in the inversion of the Radon transform inversion. Based on the analysis of the low resolution of Radon transform, we propose a high resolution Radon transform inversion method based on one-dimensional Convolutional Neural Network (1-D CNN).
This method realizes the mapping from conjugate Radon solution to high resolution by the nonlinear representation ability of CNN. And the principle of improving resolution of series mapping model based on deconvolution principle and parallel mapping model based on residual learning are analyzed. The specific frequency Radon parameter obtained by the above CNN network is restricted to the inversion of other frequency parameters, which avoids the drawbacks of frequency division training. Multiple suppression experiments on synthetic and field data show that the proposed high-resolution Radon transform based on 1-D CNN can suppress multiples with high computational efficiency.
Keywords:Radon transform  Convolutional Neural Network (CNN)  Inversion method  Frequency constraint  Multiple suppression
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号