Simultaneous quantification of dissolved organic carbon fractions and copper complexation using solid-phase extraction |
| |
Authors: | Shawn P. McElmurry David T. Long Thomas C. Voice |
| |
Affiliation: | 1. Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA;2. Department of Geological Sciences, Michigan State University, East Lansing, MI 48824, USA |
| |
Abstract: | Trace metal cycling in natural waters is highly influenced by the amount and type of dissolved organic C (DOC). Although determining individual species of DOC is unrealistic, there has been success in classifying DOC by determining operationally defined fractions. However, current fractionation schemes do not allow for the simultaneous quantification of associated trace metals. Using operational classifications, a scheme was developed to fractionate DOC based on a set of seven solid-phase extraction (SPE) cartridges. The cartridges isolated fractions based on a range of specific mechanisms thought to be responsible for DOC aggregation in solution, as well as molecular weight. The method was evaluated to determine if it can identify differences in DOC characteristics, including differences in Cu–DOC complexation. Results are that: (1) cartridge blanks were low for both DOC and Cu, (2) differences are observed in the distribution of DOC amongst the fractions from various sources that are consistent with what is known about the DOC materials and the mechanisms operative for each cartridge, (3) when present as a free cation, Cu was not retained by non-cationic cartridges allowing the method to be used to assess Cu binding, (4) the capability of the method to provide quantitative assessment of Cu–DOC complexation was demonstrated for a variety of DOC standards, (5) Cu was found to preferentially bind with high molecular weight fractions of DOC, and (6) estimated partitioning coefficients and conditional binding constants for Cu were similar to those reported elsewhere. The method developed describes DOC characteristics based on specific bonding mechanisms (hydrogen, donor–acceptor, London dispersion, and ionic bonding) while simultaneously quantifying Cu–DOC complexation. The method provides researchers a means of describing not only the extent of DOC complexation but also how that complex will be behave in natural waters. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|