首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparison of airborne eddy correlation and bulk aerodynamic methods for ocean-air turbulent fluxes during cold-air outbreaks
Authors:Shu-Hsien Chou
Institution:(1) Laboratory for Atmospheres, Code 912, NASA/Goddard Space Flight Center, 20771 Greenbelt, MD, USA
Abstract:Four bulk schemes (LKB, FG, D and DB), with the flux-profile relationships of Liuet al. (1979), Francey and Garratt (1981), Dyer (1974), and Dyer and Bradley (1982), are derived from the viscous interfacial-sublayer model of Liuet al. These schemes, with stability-dependent transfer coefficients, are then tested against the eddy-correlation fluxes measured at the 50 m flight level above the western Atlantic Ocean during cold-air outbreaks. The bulk fluxes of momentum (tau), sensible heat (H), and latent heat (E) are found to increase with various von Kármán constants (k M for tauk H forH, andk E forE). Except that the LKB scheme overestimates by 28% (46Wm–2), on the average, the fluxes estimated by the four bulk schemes appear to be in fairly good agreement with those of the eddy correlation method (magnitudes of biases within 10% for tau, 17% forH, and 13% forE). The results suggest that the overall fluxes and surface-layer scaling parameters are best estimated by FG and thatk H <k E . On the average, the FG scheme underestimates tau by 10% (0.032N m–2) andE by 4% (12Wm–2), and overestimatesH by 0.3% (0.5W m–2). The equivalent neutral transfer coefficients at 10 m height of the FG scheme compare well with some schemes of those tested by Blanc (1985).The relative importance of various von Kármán constants, dimensionless gradients and roughness lengths to the oceanic transfer coefficients is assessed. The dependence of transfer coefficients on wind speeds and roughness lengths is discussed. The transfer coefficients for tau andE agree excellently between LKB and FG. However, the ratio of the coefficient forH of LKB to that of FG, increasing with decreasing stability, is very sensitive to stability at low winds, but approaches the neutral value of 1.25 at high winds.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号