X-ray absorption studies of CH3Hg-binding sites in humic substances |
| |
Authors: | Soh-Joung Yoon Lynn M. Diener Edward A. Nater |
| |
Affiliation: | 1 Department of Soil Science, 1525 Observatory Drive, University of Wisconsin-Madison, Madison, WI 53706, USA 2 Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA |
| |
Abstract: | Methylmercury cation (CH3Hg+) is known to have a strong affinity for organic matter in soil, sedimentary, and aquatic environments. The objective of this study is to determine the dominant ligands binding CH3Hg+ in humic acids by evaluating several CH3Hg+-ligand complexation models, using mercury LIII-edge extended X-ray absorption fine structure (EXAFS). The model CH3Hg+ binding ligands examined in this study include thiol (-SH), hydrogen polysulfide (-SSH or -SSSH), sulfide (-S-), disulfide (-SS-), carboxyl (-COOH), and amine (-NH2). Based on the atomic geometry around mercury in each model structure, we distinguished CH3Hg+-binding ligands in two different humic acids (soil and aquatic). We observed CH3Hg+ preferentially binds to thiol ligands. After saturating reactive thiol ligands, the majority of CH3Hg+ binds to carboxyl ligands rather than to amine or other reduced sulfur ligands than thiol. We found no evidence of significant CH3Hg+-sulfide/disulfide or CH3Hg+-hydrogen polysulfide complexes in any samples. When CH3Hg+ binds to a humic ligand, the C-Hg bond in CH3Hg+ remains intact. Some heavy atoms are proximately coordinated around the mercury atom in the sample containing the highest CH3Hg+ levels used in this study. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|