首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cosmic-ray exposure ages of four acapulcoites and two differentiated achondrites and evidence for a two-layer structure of the acapulcoite/lodranite parent asteroid
Authors:Otto Eugster  Silvio Lorenzetti
Institution:Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Abstract:We determined the He, Ne, and Ar isotopic abundances in the four acapulcoites Dhofar (DHO) 125, DHO 290, DHO 312, and Graves Nunataks 98028, the metal-rich diogenite Northwest Africa (NWA) 1982, and a unique achondrite, NWA 1058, that resembles the acapulcoites in its chemical composition. The noble gases in these meteorites consist of three components: trapped gases, cosmic-ray produced nuclides, and nuclides produced by K, Th, and U decay. The four acapulcoites yield cosmic-ray exposure (CRE) ages in the range of 5.0-5.7 Ma and confirm earlier conclusions concerning break-up of all acapulcoites from a common S-type parent asteroid, possibly in three events 4.9, 5.9, and 14.8 Ma ago. We also discuss the other characteristics (mineralogy, chemistry, formation ages, and oxygen and trapped noble gas isotopes) of all other acapulcoites and their relatives, the lodranites. We propose that the acapulcoite/lodranite parent asteroid had a shell structure similar to that of the H chondrites: The less metamorphosed acapulcoites correspond to the H3 and H4 chondrites and originate from the exterior layers, whereas the more severely metamorphosed lodranites, similar to the H5 and H6 chondrites, represent the inner regions of their parent body. Ungrouped achondrite NWA 1982, probably a diogenite, shows a CRE age of 18.9 ± 2.0 Ma that falls on the major exposure age cluster of the diogenites. The unique achondrite NWA 1058 differs in cosmic-ray exposure age (38.9 ± 4.0 Ma) and in oxygen-isotopic composition from the acapulcoites and lodranites and is probably a winonaite.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号