首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes
Authors:Donald B Dingwell  Sharon L Webb
Institution:1. Bayerisches Geoinstitut, Universit?t Bayreuth, Postfach 101251, 8580, Bayreuth, West Germany
Abstract:The timescale of structural relaxation in a silicate melt defines the transition from liquid (relaxed) to glassy (unrelaxed) behavior. Structural relaxation in silicate melts can be described by a relaxation time, tau, consistent with the observation that the timescales of both volume and shear relaxation are of the same order of magnitude. The onset of significantly unrelaxed behavior occurs 2 log10 units of time above tau. In the case of shear relaxation, the relaxation time can be quantified using the Maxwell relationship for a viscoelastic material; tauS = eegrS/G infin (where tauS is the shear relaxation time, G infin is the shear modulus at infinite frequency and eegrS is the zero frequency shear viscosity). The value of G infin known for SiO2 and several other silicate glasses. The shear modulus, G infin, and the bulk modulus, K infin, are similar in magnitude for every glass, with both moduli being relatively insensitive to changes in temperature and composition. In contrast, the shear viscosity of silicate melts ranges over at least ten orders of magnitude, with composition at fixed temperature, and with temperature at fixed composition. Therefore, relative to eegrS, G infin may be considered a constant (independent of composition and temperature) and the value of eegrS, the relaxation time, may be estimated directly for the large number of silicate melts for which the shear viscosity is known.For silicate melts, the relaxation times calculated from the Maxwell relationship agree well with available data for the onset of the frequency-dependence (dispersion) of acoustic velocities, the onset of non-Newtonian viscosities, the scan-rate dependence of the calorimetric glass transition, with the timescale of an oxygen diffusive jump and with the Si-O bond exchange frequency obtained from 29Si NMR studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号