Spectra of stretching numbers and helicity angles in dynamical systems |
| |
Authors: | G. Contopoulos N. Voglis |
| |
Affiliation: | (1) Department of Astronomy, University of Athens Panepistimiopolis, GR 15784 Athens, Greece |
| |
Abstract: | We define a stretching number (or Lyapunov characteristic number for one period) (or stretching number) a = In % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada% Wcaaqaaiabe67a4jaadshacqGHRaWkcaaIXaaabaGaeqOVdGNaamiD% aaaaaiaawEa7caGLiWoaaaa!3F1E![left| {frac{{xi t + 1}}{{xi t}}} right|]as the logarithm of the ratio of deviations from a given orbit at times t and t + 1. Similarly we define a helicity angle as the angle between the deviation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaam% iDaaaa!3793![xi t]and a fixed direction. The distributions of the stretching numbers and helicity angles (spectra) are invariant with respect to initial conditions in a connected chaotic domain. We study such spectra in conservative and dissipative mappings of 2 degrees of freedom and in conservative mappings of 3-degrees of freedom. In 2-D conservative systems we found that the lines of constant stretching number have a fractal form. |
| |
Keywords: | Lyapunov characteristic numbers stretching numbers helicity angles conservative and dissipative mappings |
本文献已被 SpringerLink 等数据库收录! |