首页 | 本学科首页   官方微博 | 高级检索  
     

GPS/PWV资料在梅雨锋暴雨个例中的同化试验
引用本文:贝纯纯,李昕,王元,曹建奎,曾明剑. GPS/PWV资料在梅雨锋暴雨个例中的同化试验[J]. 气象科学, 2016, 36(2): 149-157
作者姓名:贝纯纯  李昕  王元  曹建奎  曾明剑
作者单位:杭州市气象服务中心, 杭州 310251;南京大学 大气科学学院 中尺度灾害性天气教育部重点实验室, 南京 210093,江苏省气象科学研究所, 南京 210009,南京大学 大气科学学院 中尺度灾害性天气教育部重点实验室, 南京 210093,中国人民解放军93123部队, 辽宁 辽阳 111000,江苏省气象科学研究所, 南京 210009
基金项目:国家重点基础研究发展计划(973计划)项目(2015CB452801);国家重点基础研究发展计划(973计划)项目(2013CB430100)
摘    要:基于WRF(Weather Research and Forecasting Model,天气预报模式)及其三维变分同化系统3DVAR,利用江苏省GPS/PWV(PWV:Precipitable Water Vapor,GPS反演得到可降水量)资料,并将其与探空资料比对订正,针对2011年6月18日梅雨锋暴雨进行3 h循环同化模拟。在降水参数化方案敏感性试验与单点同化试验基础上,设计多组试验对6 h降水量进行TS(Threat Score)评估。结果表明:(1)同化订正GPS/PWV资料对降水预报能力显著提高,特别是大雨、暴雨量级以上的预报能力;(2)降水量的RMSE(Root Mean Squared Error,均方根误差)相比控制试验均减小,CC(Correlation Coefficient,相关系数)均增大,最显著试验RMSE从19.1 mm下降到12.6 mm,CC从0.45上升到0.74;(3)NMC方法统计的背景误差协方差条件下中雨至暴雨量级TS评分均有一定程度提高,默认的背景误差协方差在大雨以上量级TS评分大幅提高。

关 键 词:WRF模式与资料同化  GPS/PWV资料  梅雨锋暴雨  参数化方案敏感性试验
收稿时间:2014-12-17
修稿时间:2015-03-10

Assimilation Experiment of GPS/PWV Data in The Rainstrom Case of Meiyu Front
BEI Chunchun,LI Xin,WANG Yuan,CAO Jiankui and ZENG Mingjian. Assimilation Experiment of GPS/PWV Data in The Rainstrom Case of Meiyu Front[J]. Journal of the Meteorological Sciences, 2016, 36(2): 149-157
Authors:BEI Chunchun  LI Xin  WANG Yuan  CAO Jiankui  ZENG Mingjian
Affiliation:The Meterorological Service of Hangzhou, Hangzhou 310051, China;Key Laboratory of Mesoscale Severe Weather/MOE and School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China,Jiangsu Research Institute of Meteorological Sciences, Nanjing 210009, China,Key Laboratory of Mesoscale Severe Weather/MOE and School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China,Troops 93123 of The Chinese People''s Liberation Army, Liaoyang 111000, China and Jiangsu Research Institute of Meteorological Sciences, Nanjing 210009, China
Abstract:Based on WRF(Weather Research and Forecasting Model) and its three-demensional variational data assimilation system 3DVAR, three hours cycling assimilation experiments of Meiyu front rainstorm occured on June 18, 2011 are carried out with GPS/PWV(PWV:Precipitable Water Vapor) data which are corrected by comparing with sounding data. Based on the sensitivity researches of parameterization schemes for precipitation forecast and single point assimilation tests, several experiments are designed to assess 6 hour accumulated rainfall by TS scores(Threat Score). The results show that: (1) the capacity of precipitation forecast is significantly increased with the assimilation of the corrected GPS/PWV data, especially in heavy rain and torrential rain. (2) RMSE(Root Mean Squared Error) are reduced and CC(correlation coefficient) are increased by comparing with control tests. The RMSE drops from 19.1 mm to 12.6 mm and the CC increases from 0.45 to 0.74 in the most significant tests. (3) The TS scores are improved in the magnitudes from middle rain to torrential rain under the background error covariance derived from NMC method, while TS scores are improved significantly in the magnitudes beyond heavy rain under the default background error covariance.
Keywords:WRF model and data assimilation  GPS/PWV data  Meiyu front rainstorm  sensitivity researches of parameterization schemes
本文献已被 CNKI 等数据库收录!
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号