Spatial and temporal variabilities of hypoxia in the Rappahannock River,Virginia |
| |
Authors: | Albert Y. Kuo Kyeong Park Mohamed Z. Moustafa |
| |
Affiliation: | 1. Virginia Institute of Marine Science, School of Marine Science College of William and Mary, 23062, Cloucester Point, Virginia 2. Tetra Tech, Inc., 10306 Eaton Place, Suite 340, Fairfax, Virginia, 22030
|
| |
Abstract: | Hypoxia/anoxia in bottom waters of the Rappahannock River, a tributary estuary of Chesapeake Bay, was observed to persist throughout the summer in the deep basin near the river mouth; periodic reoxygenation of bottom water occurred on the shallower sill at the river mouth. The reoxygenation events were closely related to spring tide mixing. The dissolved oxygen (DO) in surface waters was always near or at the saturation level, while that of bottom waters exhibited a characteristic spatial pattern. The bottom DO decreased upriver from river mouth, reaching a minimum upriver of the deepest point of the river and increasing as the water becaume shallower further upriver. A model was formulated to describe the longitudinal distribution of DO in bottom waters. The model is based on Lagrangian concept—following a water parcel as it travels upriver along the estuarine bottom. The model successfully describes the characteristic distribution of DO and also explains the shifting of the minimum DO location in response to spring-neap cycling. A diagnostic study with the model provided insight into relationships between the bottom DO and the competing factors that contribute to the DO budget of bottom waters. The study reveals that both oxygen demand, either benthic or water column demand, and vertical mixing have a promounced effect on the severity of hypoxia in bottom waters of an estary. However, it is the vertical mixing which controls the longitudinal location of the minimum DO. The strength of gravitational circulation is also shown to affect the occurrence of hypoxia. An estuary with stronger circulation tends to have less chance for hypoxia to occur. The initial DO deficit of bottom water entering an estuary has a strong effect on DO concentration near the river mouth, but its effect diminishes in the upriver direction. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|