首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen uptake kinetics in the Ross Sea, Antarctica
Authors:William P. Cochlan  Deborah A. Bronk  
Abstract:The first estimates of uptake kinetic parameters for NH4+, NO3, and urea in the Ross Sea, Antarctica were measured on three cruises during austral late winter–early spring 1996 (pre-bloom), late spring 1997 (bloom development), and summer 1997 (bloom decline). Nitrogen (N) uptake experiments were conducted with water collected at the 50% light penetration depth using trace-metal clean protocols and 15N tracer techniques. At all sites, ambient NO3 concentrations ranged from 5.8 to 30.5 μg-at N l−1 and silicic acid concentrations were greater than 62.0 μg-at Si l−1. The following trends were observed. First, based on maximum uptake rates (Vmax), apparent N utilization followed the order NO3>NH4+>urea during the pre-bloom and bloom development cruises. During the summer cruise, as the bloom was declining, the apparent order of utilization was NH4+>NO3>urea. Second, evidence for possible repression of NO3 uptake by elevated NH4+ concentrations was only observed at one site. Third, the kinetic parameters of NH4+ uptake rates corrected for isotope dilution were compared with the kinetic parameters determined from uncorrected rates. In this comparison, the measure of substrate affinity, α (α=Vmax/Ks) increased by an average of 4.6-fold when rates were corrected for isotope dilution, but values of Vmax remained unchanged. Fourth, using bacterial production data, the magnitude of bacterial N uptake was estimated. Assuming that all bacterial N demands were met with NH4+, the estimated bacterial portion of NH4+ uptake ranged from <1%, when the ratio of bacteria to autotrophic biomass was low, to 35%, when bacterial abundance and biomass were highest. Finally, dramatic changes in NH4+ uptake capacity were observed at one station (Stn. O), where kinetic parameters were measured during all three cruises. We hypothesize that a mutualistic relationship exists between phytoplankton and heterotrophic bacteria, and that the creation of microzones of high NH4+ concentrations contributed to the changes seen at this station.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号