首页 | 本学科首页   官方微博 | 高级检索  
     

非线性最小二乘参数平差迭代算法
引用本文:范东明. 非线性最小二乘参数平差迭代算法[J]. 测绘学院学报, 2001, 18(3): 173-175
作者姓名:范东明
作者单位:西南交通大学测量工程系 四川成都610031
摘    要:在非线性最小二乘问题现有的3类主要算法--高斯-牛顿法、阻尼最小二乘法和最小二乘的拟牛顿法的基础上,引入了综合性能更优的非线性规划的SQPM(序列二次规划法)算法,并且为进一步提高SQPM算法迭代的收敛性,对其步长策略进行了改进。改进的SQPM算法成为无需精确计算参数概略值的非线性最小二乘参数平差的实用和有效算法。

关 键 词:非线性最小二乘 参数平差 迭代算法 SQPM算法 高斯-牛顿法 测量误差 序列二次规划法

Study on Iterative Algorithm of Nonlinear Least Squares Adjustment by Parameters
FAN Dong-ming. Study on Iterative Algorithm of Nonlinear Least Squares Adjustment by Parameters[J]. Journal of Institute of Surveying and Mapping, 2001, 18(3): 173-175
Authors:FAN Dong-ming
Abstract:In addition to the three existing nonlinear squares algorithmsGauss-Newton method, damped lwast squares method and quasi-Newton method on least squares, a better algorithmSQPM (Sequential Quadratic Programming Method) as one of the most powerful algorthms of nonlinear programming is applied. And the step-length policy of SQPM is improved in order to advance the iterative convergency. The improved SQPM becomes a useful and effective algorithm to solve parameters problems by nonlinear least squares adjustment without exactly computing the approximation of parameters.
Keywords:nonlinear least squares  adjustment by parameters  iterative algorithm  Sequential Quadratic Programming Method(SQPM)
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号