Microstructure and micromotion in recrystallization flow of octachloropropane: A first look |
| |
Authors: | W. D. Means |
| |
Affiliation: | 1. Department of Geological Sciences, State University of New York at Albany, 1400 Washington Avenue, 12222, Albany, New York, USA
|
| |
Abstract: | Advance of the genetic theory of metamorphic fabric depends in part on improved understanding of dynamic recrystallization processes, and the effects of these processes upon various fabric elements. This paper describes aspects of the microstructural evolution and associated small-scale motion in a dynamically recrystallizing sheet of octachloropropane. The material was deformed in progressive pure shear, at 2×10?3 sec?1 (with interruptions for photography and U-stage measurement), at 70 % of its absolute melting temperature. The dominant recrystallization process is migration of grain boundaries, with consequent major adjustment of the shapes and sizes of grains, but no marked change in the average grain size and no creation of new grains. Typical grains in the fully deformed material (30% bulk shortening) have a composite structure with primitive, high-strain regions inherited directly from the undeformed state, rimmed by successively younger regions of lower strain accreted behind outwardmoving boundaries. An array of second-phase marker particles permits distinction between grain boundary motion with and through the material, and reveals an unexpected ability of grains as a whole to migrate short distances up a bulk strain gradient. The markers also show that the only important deformation process is intragranular deformation and that it is proceeding at somewhat different rates in different grains. The central problem posed by the observations is to explain the direction and speed of each migrating boundary. Two hypotheses were tested, neither with outstanding success. One of these hypotheses is that grain boundary migration is part of a strain accomodation process, that operates between grains stretching or shortening at different rates parallel to their mutual boundary. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|