首页 | 本学科首页   官方微博 | 高级检索  
     

K-GM(1,1)模型在岩体变形监测中的应用
引用本文:马符讯,席瑞杰,徐南. K-GM(1,1)模型在岩体变形监测中的应用[J]. 测绘工程, 2016, 0(8): 42-44. DOI: 10.19349/j.cnki.issn1006-7949.2016.08.010
作者姓名:马符讯  席瑞杰  徐南
作者单位:1. 武汉大学 卫星导航定位技术研究中心,湖北 武汉,430079;2. 武汉大学 测绘学院,湖北 武汉,430079;3. 清华大学 地球系统科学研究中心,北京,100084
基金项目:国家自然科学基金资助项目(41374033)
摘    要:传统GM (1,1)模型存在着长期预测效果差、模型精度不高等问题,卡尔曼滤波能够排除建模过程中随机干扰因素,滤波值能够反映更真实的数据情况。为了能更好地提高变形监测的预测精度,基于传统GM (1,1)模型和卡尔曼滤波,提出K‐GM (1,1)模型,利用该模型对岩体变形监测数据进行建模预测,并与传统GM (1,1)模型预测结果进行对比分析,结果表明,K‐GM (1,1)模型具有较高的预测精度,可作为变形监测的一种新方法。

关 键 词:卡尔曼滤波  GM (1,1)模型  预测  变形监测

Application of K-GM(1,1)model to the deformation monitoring of rocks
MA Fuxun,XI Ruijie,XU Nan. Application of K-GM(1,1)model to the deformation monitoring of rocks[J]. Engineering of Surveying and Mapping, 2016, 0(8): 42-44. DOI: 10.19349/j.cnki.issn1006-7949.2016.08.010
Authors:MA Fuxun  XI Ruijie  XU Nan
Abstract:There are some problems in the tradition GM (1 ,1) forecast models such as the bad effect in the long term prediction and the low accuracy and so on .T herefore ,Kalman filter method has the advantage of eliminating random interference factors in the process of modeling ,and the filtered data can reflect the real situation of the project .In order to improve the prediction accuracy of deformation monitoring ,this paper proposes to use the K‐GM (1 ,1) model ,based on the GM (1 ,1) model and Kalman filter ,and to analyze the rock mass deformation monitoring data .The results indicate that comparing with the GM (1 ,1) model , the K‐GM (1 ,1) model can achieve a higher prediction accuracy ,w hich can be used as a new method for deformation monitoring .
Keywords:Kalman filtering  GM (1,1)  forecast  deformation monitoring
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号