首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析和贝叶斯正则化方法的神经网络年最大洪峰流量预测模型探讨
作者姓名:李红霞  许士国  范垂仁
作者单位:1. 大连理工大学,土木水利学院,辽宁,大连,116024
2. 长春自然灾害预测研究服务中心,吉林,长春,130022
摘    要:针时水文预测建模中输入因子过多而导致神经网络结构规模过大,泛化能力差的问题,利用主成分分析和贝叶斯正则化方法对神经网络进行改进,优化网络结构,从而提高泛化能力。以洮儿河流域镇西站年最大洪峰流量预测为例,研究结果表明,改进的神经网络预测方法与传统的神经网络方法相比,泛化能力有显著提高,而且网络的收敛也比较稳定,实际预测中效果良好。

关 键 词:神经网络  预测  泛化能力  主成分分析  贝叶斯正则化
文章编号:1000-0852(2006)06-0030-03
收稿时间:2005-12-30
修稿时间:2005-12-30
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水文》浏览原始摘要信息
点击此处可从《水文》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号