首页 | 本学科首页   官方微博 | 高级检索  
     

两种不同的SVM建模方法在大坝变形预测中的应用
引用本文:沈哲辉,张安银,司聪,沈月千. 两种不同的SVM建模方法在大坝变形预测中的应用[J]. 测绘工程, 2017, 26(7). DOI: 10.19349/j.cnki.issn1006-7949.2017.07.012
作者姓名:沈哲辉  张安银  司聪  沈月千
作者单位:1. 江苏省地质工程勘察院,江苏南京,211102;2. 河海大学地球科学与工程学院,江苏南京,211100
摘    要:用支持向量机对大坝变形监测数据建模分析和预测一般有两种方法:一是仅用大坝的变形数据作为输入端和输出端,构建支持向量机模型;二是用温度、水压等大坝变形的影响因子作为输入端,大坝变形数据作为输出端,构建支持向量机模型。两种建模方法比较研究鲜有讨论,文中用这两种建模方法对福建省某一大坝进行建模预测。结果表明,第二种方法建模预测速度更快,预测精度更高。

关 键 词:支持向量机(SVM)  变形影响因子  变形量  建模方法  预测

Application of two different SVM modeling methods to the dam deformation prediction
SHEN Zhehui,ZHANG Anyin,SI Cong,SHEN Yueqian. Application of two different SVM modeling methods to the dam deformation prediction[J]. Engineering of Surveying and Mapping, 2017, 26(7). DOI: 10.19349/j.cnki.issn1006-7949.2017.07.012
Authors:SHEN Zhehui  ZHANG Anyin  SI Cong  SHEN Yueqian
Abstract:Generally,there are two ways of modeling dam deformation monitoring data with support vector machine.First,the support vector machine model is constructed only with the dam deformation data as the input and output;second,the support vector machine model is constructed with the deformation of the dam impact factors such as temperature,water pressure as input,and the dam deformation data as output.There are few discussions about which modeling method is more outstanding.Two methods are used to model a dam in Fujian Province in this paper.Result shows that the second method not only can spend less time modeling and predicting,but also improve the prediction accuracy.
Keywords:SVM  deformation impact factor  deformation  modeling method  prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号