首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群算法在概率积分法沉陷预计模型参数反演中的应用
引用本文:魏宗海. 粒子群算法在概率积分法沉陷预计模型参数反演中的应用[J]. 测绘工程, 2017, 26(10). DOI: 10.19349/j.cnki.issn1006-7949.2017.10.007
作者姓名:魏宗海
作者单位:河北省地矿局第三地质大队,河北 张家口,075000
摘    要:
针对开采沉陷预计模型参数反演所存在的算法复杂、计算量大等缺陷,将粒子群算法引入到概率积分法开采沉陷预计模型参数反演中。研究粒子群算法反演概率积分法预计模型参数的基本原理、编码方法及适应度函数的构造方法,同时结合河北省某煤矿的实测数据,以下沉拟合值与实测值的中误差作为反演精度的评价标准对算法进行实例验证,对提高开采沉陷预计的精度有一定的参考实用价值。

关 键 词:开采沉陷预计  概率积分法  粒子群算法  适应度函数

Application of particle swarm optimization in parameter inversion of probabilistic integral subsidence prediction model
WEI Zonghai. Application of particle swarm optimization in parameter inversion of probabilistic integral subsidence prediction model[J]. Engineering of Surveying and Mapping, 2017, 26(10). DOI: 10.19349/j.cnki.issn1006-7949.2017.10.007
Authors:WEI Zonghai
Abstract:
In this paper, the particle swarm optimization (PSO) algorithm is introduced into the parameter estimation of the mining model of the probabilistic integration method, which is used to estimate the probability integral method.The basic principle of the parameter, the coding method and the construction method of the fitness function are combined.At the same time, the algorithm is validated by using the measured value of the settlement value and the measured value of the coal mine in Hebei Province as the evaluation criterion of the inversion accuracy.Improving the accuracy of mining subsidence will have a certain reference value.
Keywords:mining subsidence prediction  probability integral method  particle swarm algorithm  fitness function
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号