首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relating White-Light Coronal Images to Magnetic Fields and Plasma Flow
Authors:Richard Woo
Institution:(1) Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 238-725, Pasadena, CA, 91109, U.S.A.
Abstract:The solar magnetic field is key to a detailed understanding of the Sun's atmosphere and its transition to the solar wind. However, the lack of detailed magnetic field measurements everywhere except at the photosphere has made it challenging to determine its topology and to understand how it produces the observed plasma properties of the corona and solar wind. Recent progress based on the synthesis of diversified observations has shown that the corona is highly filamentary, that the coronal magnetic field is predominantly radial, and that the ability of closed fields to trap plasma at the base of the corona is a manifestation of how the solar field controls the solar wind. In this paper, we explain how these results are consistent with the relationship between density structure of white-light images and fields and flow. We point out that the ‘shape’ of the corona observed in white-light images is a consequence of the steep fall-off in density with radial distance, coupled with the inherent limitation in the sensitivity of the observing instrument. We discuss how the significant variation in radial density fall-off with latitude leads to a coronal shape that is more precisely revealed when a radial gradient filter is used, but which also gives a false impression of the tracing of highly non-radial fields. Instead, the coronal field is predominantly radial, and the two magnetic features that influence the shape of the corona are the closed fields at the base of the corona, and the polarity reversal forming the heliospheric current sheet in the outer corona. An erratum to this article is available at .
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号